Skip to main content
Log in

Non-Colloidal Nanocatalysts Fabricated Using Arc Plasma Deposition and Their Application in Heterogenous Catalysis and Photocatalysis

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

To understand technologically complex catalytic systems and to tailor both activity and selectivity in heterogeneous catalysis and photocatalysis, there is the challenge of bridging the materials gap that exists between two- and three-dimensional model catalytic systems and real catalysts, which are comprised of highly dispersed, oxide-supported metal nanoparticles. While colloid nanoparticles synthesized using wet chemistry have the potential for tuning size, shape, and composition, there are complexities related to the organic capping layers. Therefore, the development of new model catalysts without a capping layer is crucial. Coaxial vacuum arc plasma deposition (APD) is a method to fabricate non-colloidal nanocatalysts that has the potential for large-scale synthesis of nanocatalysts and, at the same time, allows for systematic investigation of intrinsic factors that affect catalytic activity. In this article, we describe the fabrication of catalytic nanoparticles using APD, and their application in heterogeneous catalysis and photocatalysis research. Direct vaporization of metallic materials to deposit active materials on two-dimensional or three-dimensional oxide supports has drawn considerable interest due to its simplicity, high reproducibility, and the possibility for large-scale production. We highlight recent studies on metal–support interactions, the effect of doping on the oxide, and hot electron-driven chemical reactions. In the case of photocatalysis, APD was used to fabricate metal nanoparticles on a hierarchically porous oxide; enhanced hydrogen evolution by doping and porosity was also demonstrated. Therefore, the materials gap in catalysis can be bridged by the potential for large-scale synthesis of a variety of catalysts using APD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from [13]. Copyright (2009) Springer Science + Business media, LLC

Fig. 2

a, b Reprinted with permission from [20]. Copyright (2000) Elsevier Science S.A. c Courtesy of Ulvac-Riko, Inc

Fig. 3

Reprinted with permission from ref [25]. Copyright (2014) Springer

Fig. 4

Reprinted with permission from [30]. Copyright (2012) American Chemical Society

Fig. 5

Reprinted with permission from [36]. Copyright (2014) Elsevier Science S.A

Fig. 6

a Reprinted with permission from [37]. Copyright (2013) The Royal Society of Chemistry. b Reprinted with permission from [40]. Copyright (2009) Wiley-VCH Weinheim

Fig. 7

Reprinted with permission from [41]. Copyright (2013) Elsevier Science S.A

Fig. 8

Reprinted with permission from [41]. Copyright (2013) Elsevier Science S.A

Fig. 9

Reprinted with permission from [50]. Copyright (2014) Wiley-VCH Weinheim

Fig. 10

Reprinted with permission from [61]. Copyright (2013) Elsevier Science S.A

Fig. 11

Reprinted with permission from [64]. Copyright (2016) Elsevier Science S.A

Similar content being viewed by others

References

  1. Freund HJ, Kuhlenbeck H, Libuda J, Rupprechter G, Baumer M, Hamann H (2001) Top Catal 15(2–4):201–209

    Article  CAS  Google Scholar 

  2. Bell AT (2003) Science 299(5613):1688–1691

    Article  CAS  Google Scholar 

  3. Somorjai GA, Park JY (2008) Angew Chem Int Edit 47(48):9212–9228

    Article  CAS  Google Scholar 

  4. Somorjai GA, York RL, Butcher D, Park JY (2007) Phys Chem Chem Phys 9(27):3500–3513

    Article  CAS  Google Scholar 

  5. Somorjai GA, Park JY (2008) Top Catal 49(3–4):126–135

    Article  CAS  Google Scholar 

  6. Aliaga C, Park JY, Yamada Y, Lee HS, Tsung CK, Yang PD, Somorjai GA (2009) J Phys Chem C 113(15):6150–6155

    Article  CAS  Google Scholar 

  7. Park JY, Lee H, Renzas JR, Zhang YW, Somorjai GA (2008) Nano Lett 8(8):2388–2392

    Article  CAS  Google Scholar 

  8. Anders A (2008) Springer series on atomic, optical, and plasma physics, vol 50. Springer, New York

    Google Scholar 

  9. Randhawa H (1988) Thin Solid Films 167(1–2):175–185

    Article  CAS  Google Scholar 

  10. Randhawa H, Johnson PC (1987) Surf Coat Technol 31(4):303–318

    Article  CAS  Google Scholar 

  11. Takei T, Akita T, Nakamura I, Fujitani T, Okumura M, Okazaki K, Huang J, Ishida T, Haruta M (2012) In: Bruce CG, Friederike CJ (eds) Advances in catalysis, vol 55. Academic Press, New York, pp 1–126

    Google Scholar 

  12. Hinokuma S, Misumi S, Yoshida H, Machida M (2015) Catal Sci Technol 5(9):4249–4257

    Article  CAS  Google Scholar 

  13. Hinokuma S, Murakami K, Uemura K, Matsuda M, Ikeue K, Tsukahara N, Machida M (2009) Top Catal 52(13–20):2108–2111

    Article  CAS  Google Scholar 

  14. Sanders DM, Anders A (2000) Surf Coat Technol 133:78–90

    Article  Google Scholar 

  15. Takikawa H, Tanoue H (2007) IEEE Trans Plasma Sci 35(4):992–999

    Article  CAS  Google Scholar 

  16. Swift PD (1996) J Phys D 29(7):2025–2031

    Article  CAS  Google Scholar 

  17. Shinno H, Fukutomi M, Fujitsuka M, Okada M (1985) J Nucl Mater 133(AUG):749–753

    Article  Google Scholar 

  18. Anders A (1999) Surf Coat Technol 120:319–330

    Article  Google Scholar 

  19. Martin PJ, Bendavid A (2001) Thin Solid Films 394(1–2):1–15

    Article  CAS  Google Scholar 

  20. Chun S-Y, Chayahara A (2000) Surf Coat Technol 132(2–3):217–221

    Article  CAS  Google Scholar 

  21. Hiramatsu M, Nagao H, Taniguchi M, Amano H, Ando Y, Hori M (2005) Jpn J Appl Phys Part 2 44(20–23):L693–L695

    Article  CAS  Google Scholar 

  22. Phokharatkul D, Ohno Y, Nakano H, Kishimoto S, Mizutani T (2008) Appl Phys Lett 93(5):053112–053113

    Article  Google Scholar 

  23. Chen JH, Lu GH (2006) Nanotechnology 17(12):2891–2894

    Article  CAS  Google Scholar 

  24. Kim SH, Jeong YE, Ha H, Byun JY, Kim YD (2014) Appl Surf Sci 297:52–58

    Article  CAS  Google Scholar 

  25. Kim SH, Park JY (2014) In: Park JY (ed) Current trends of surface science and catalysis. Springer, New York, pp 45–64

    Chapter  Google Scholar 

  26. Haller GL, Resasco DE (1989) Adv Catal 36:173–235

    CAS  Google Scholar 

  27. Belton DN, Sun YM, White JM (1986) J Catal 102(2):338–347

    Article  CAS  Google Scholar 

  28. Grunwaldt J-D, Baiker A (1999) J Phys Chem B 103(6):1002–1012

    Article  CAS  Google Scholar 

  29. Hayek K, Fuchs M, Klötzer B, Reichl W, Rupprechter G (2000) Top Catal 13(1–2):55–66

    Article  CAS  Google Scholar 

  30. Qadir K, Kim SH, Kim SM, Ha H, Park JY (2012) J Phys Chem C 116(45):24054–24059

    Article  CAS  Google Scholar 

  31. Park JY, Baker LR, Somorjai GA (2015) Chem Rev 115(8):2781–2817

    Article  CAS  Google Scholar 

  32. Nedrygailov II, Park JY (2016) Chem Phys Lett 645:5–14

    Article  CAS  Google Scholar 

  33. Tauster SJ (1987) Acc Chem Res 20(11):389–394

    Article  CAS  Google Scholar 

  34. Schwab GM, Matthes B (1975) Z Phys Chem Neue Folge 94(4–6):243–254

    Article  CAS  Google Scholar 

  35. Park D, Kim SM, Kim SH, Yun JY, Park JY (2014) Appl Catal A 480:25–33

    Article  CAS  Google Scholar 

  36. Goddeti KC, Kim SM, Lee YK, Kim SH, Park JY (2014) Catal Lett 144(8):1411–1417

    Article  CAS  Google Scholar 

  37. Kim SM, Park D, Yuk Y, Kim SH, Park JY (2013) Faraday Discuss 162:355–364

    Article  CAS  Google Scholar 

  38. Kim SM, Lee SJ, Kim SH, Kwon S, Yee KJ, Song H, Somorjai GA, Park JY (2013) Nano Lett 13(3):1352–1358

    Article  CAS  Google Scholar 

  39. Kim SM, Lee H, Goddeti KC, Kim SH, Park JY (2015) J Phys Chem C 119(28):16020–16025

    Article  CAS  Google Scholar 

  40. Fujitani T, Nakamura I, Akita T, Okumura M, Haruta M (2009) Angew Chem Int Edit 48(50):9515–9518

    Article  CAS  Google Scholar 

  41. Kim SH, Jung C-H, Sahu N, Park D, Yun JY, Ha H, Park JY (2013) Appl Catal A 454(0):53–58

    Article  CAS  Google Scholar 

  42. Valden M, Lai X, Goodman DW (1998) Science 281(5383):1647–1650

    Article  CAS  Google Scholar 

  43. Haruta M (2002) CATTECH 6(3):102–115

    Article  CAS  Google Scholar 

  44. Anpo M, Onaka M, Yamashita H (2003) Science and technology in catalysis 2002: proceedings of the Fourth Tokyo Conference on Advanced Catalytic Science and Technology, Tokyo, July 14–19, 2002. Studies in surface science and catalysis, vol 145. Kodansha. Elsevier, Tokyo

  45. Boronat M, Corma A (2010) Langmuir 26(21):16607–16614

    Article  CAS  Google Scholar 

  46. Hinokuma S, Okamoto M, Ando E, Ikeue K, Machida M (2012) B Chem Soc Jpn 85(1):144–149

    Article  CAS  Google Scholar 

  47. Hinokuma S, Fujii H, Katsuhara Y, Ikeue K, Machida M (2014) Catal Sci Technol 4(9):2990–2996

    Article  CAS  Google Scholar 

  48. Takahashi S, Chiba H, Kato T, Endo S, Hayashi T, Todoroki N, Wadayama T (2015) Phys Chem Chem Phys 17(28):18638–18644

    Article  CAS  Google Scholar 

  49. Agawa Y, Tanaka H, Torisu S, Endo S, Tsujimoto A, Gonohe N, Malgras V, Aldalbahi A, Alshehri SM, Kamachi Y, Li CL, Yamauchi Y (2015) Sci Technol Adv Mat 16(2):024804

    Article  Google Scholar 

  50. Naik B, Kim SM, Jung CH, Moon SY, Kim SH, Park JY (2014) Adv Mater Interfaces 1(1):1300018

    Article  Google Scholar 

  51. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293(5528):269–271

    Article  CAS  Google Scholar 

  52. Liu J, Liu GL, Li MZ, Shen WZ, Liu ZY, Wang JX, Zhao JC, Jiang L, Song YL (2010) Energy Environ Sci 3(10):1503–1506

    Article  CAS  Google Scholar 

  53. Truong N, Yoo J, Altomarea M, Schmuki P (2014) Chem Commun 50(68):9653–9656

    Article  Google Scholar 

  54. Xu GQ, Liu HP, Wang JW, Lv J, Zheng ZX, Wu YC (2014) Electrochim Acta 121:194–202

    Article  CAS  Google Scholar 

  55. Yang JH, Wang DG, Han HX, Li C (2013) Acc Chem Res 46(8):1900–1909

    Article  CAS  Google Scholar 

  56. Rosseler O, Shankar MV, Du MKL, Schmidlin L, Keller N, Keller V (2010) J Catal 269(1):179–190

    Article  CAS  Google Scholar 

  57. Trasatti S (1972) J Electroanal Chem 39(1):163–184

    Article  CAS  Google Scholar 

  58. Huang BS, Wey MY (2011) Int J Hydrog Energy 36(16):9479–9486

    Article  CAS  Google Scholar 

  59. Yu JG, Qi LF, Jaroniec M (2010) J Phys Chem C 114(30):13118–13125

    Article  CAS  Google Scholar 

  60. Moon SY, Naik B, An K, Kim SM, Park JY (2016) RSC Adv 6(22):18198–18203

    Article  CAS  Google Scholar 

  61. Naik B, Moon SY, Kim SH, Park JY (2015) Appl Surf Sci 354:347–352

    Article  CAS  Google Scholar 

  62. Park JY, Renzas JR, Hsu BB, Somorjai GA (2007) J Phys Chem C 111(42):15331–15336

    Article  CAS  Google Scholar 

  63. Somorjai GA, Bratlie KM, Montano MO, Park JY (2006) J Phys Chem B 110(40):20014–20022

    Article  CAS  Google Scholar 

  64. Park SH, Kim SH, Park SJ, Ryoo S, Woo K, Lee JS, Kim TS, Park HD, Park H, Park YI, Cho J, Lee JH (2016) J Membr Sci 513:226–235

    Article  CAS  Google Scholar 

  65. Oveisi H, Rahighi S, Jiang XF, Agawa Y, Beitollahi A, Wakatsuki S, Yamauchi Y (2011) Chem Lett 40(4):420–422

    Article  CAS  Google Scholar 

  66. Ito T, Kunimatsu M, Kaneko S, Hirabayashi Y, Soga M, Agawa Y, Suzuki K (2012) Talanta 99:865–870

    Article  CAS  Google Scholar 

  67. Chen JJ, Wu JCS, Wu PC, Tsai DP (2011) J Phys Chem C 115(1):210–216

    Article  CAS  Google Scholar 

  68. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1995) J Photochem Photobiol A 89(2):177–189

    Article  CAS  Google Scholar 

  69. Fang J, Cao SW, Wang Z, Shahjamali MM, Loo SCJ, Barber J, Xue C (2012) Int J Hydrog Energy 37(23):17853–17861

    Article  CAS  Google Scholar 

  70. He YH, Li DZ, Chen J, Shao Y, Xian JJ, Zheng XZ, Wang P (2014) Rsc Adv 4(3):1266–1269

    Article  CAS  Google Scholar 

  71. Chen CY, Kuai L, Chen YJ, Wang Q, Kan EJ, Geng BY (2015) Rsc Adv 5(119):98254–98259

    Article  CAS  Google Scholar 

  72. Kong WZ, Tian BZ, Zhang JL, He DN, Anpo M (2013) Res Chem Intermed 39(4):1701–1710

    Article  CAS  Google Scholar 

  73. Nsib MF, Saafi S, Rayes A, Moussa N, Houas A (2016) J Energy Inst 89(4):694–703

    Article  CAS  Google Scholar 

  74. Bian ZF, Tachikawa T, Zhang P, Fujitsuka M, Majima T (2014) J Am Chem Soc 136(1):458–465

    Article  CAS  Google Scholar 

  75. Rodriguez-Gonzalez V, Zanellac R, del Angela G, Gomeza R (2008) J Mol Catal A 281(1–2):93–98

    Article  CAS  Google Scholar 

  76. Li FB, Li XZ (2002) Chemosphere 48(10):1103–1111

    Article  CAS  Google Scholar 

  77. Tanaka A, Sakaguchi S, Hashimoto K, Kominami H (2013) Acs Catal 3(1):79–85

    Article  CAS  Google Scholar 

  78. Kowalska E, Abe R, Ohtani B (2009) Chem Commun 2:241–243

    Article  Google Scholar 

  79. Moonsiri M, Rangsunvigit P, Chavadej S, Gulari E (2004) Chem Eng J 97(2–3):241–248

    Article  CAS  Google Scholar 

  80. Li HX, Bian ZF, Zhu J, Huo YN, Li H, Lu YF (2007) J Am Chem Soc 129(15):4538–4539

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Institute for Basic Science (IBS-R004-A2-2017-a00) and by a Grant from the future R&D Program (2E26120) funded by the Korea Institute of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Young Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.H., Moon, SY. & Park, J.Y. Non-Colloidal Nanocatalysts Fabricated Using Arc Plasma Deposition and Their Application in Heterogenous Catalysis and Photocatalysis. Top Catal 60, 812–822 (2017). https://doi.org/10.1007/s11244-017-0746-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0746-8

Keywords

Navigation