Skip to main content
Log in

Construction of New Electronic Density Functionals with Error Estimation Through Fitting

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We investigate the possibilities and limitations for the development of new electronic density functionals through large-scale fitting to databases of binding energies obtained experimentally or through high-quality calculations. We show that databases with up to a few hundred entries allow for up to of the order ten parameters to be adjusted in the exchange enhancement factor. The transferability of models between data is analyzed, and it is shown to be difficult to transfer a model trained exclusively on molecular atomization energies to the treatment of chemisorption systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The reference values calculated from the reference values of the atomization energies database (which probably yields more accurate values) deviate from the reference values that involve RPBE vibrations by 0.02eV, on average.

References

  1. Hohenberg P, Kohn W (1964) Phys Rev 136:864

    Article  Google Scholar 

  2. Perdew JP, Schmidt K (2001) Density functional theory and its application to materials. AIP Press, Melville

    Google Scholar 

  3. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  4. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  5. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  6. Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Sivia D, Skilling J (2006) Data analysis: a Bayesian tutorial. Oxford University Press, Oxford

    Google Scholar 

  8. Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin

    Google Scholar 

  9. Brown KS, Sethna JP (2003) Phys Rev E 68:21904

    Article  Google Scholar 

  10. Efron B (1983) J Am Stat Assoc 78:316

    Google Scholar 

  11. Hesterberg T, Moore DS, Monaghan S, Clipson A, Epstein R (2005) Bootstrap methods and permutation tests. In: Introduction to the practice of statistics, chap 14, 5th edn. W.H. Free- man, New York

  12. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer Series in Statistics. Springer, New York

  13. Frederiksen SL, Jacobsen KW, Brown KS, Sethna JP (2004) Phys Rev Lett 93(16):165501

    Article  Google Scholar 

  14. Mortensen JJ, Kaasbjerg K, Frederiksen SL, Nørskov JK, Sethna JP, Jacobsen KW (2005) Phys Rev Lett 95(21):216401

    Article  CAS  Google Scholar 

  15. Toivanen J, Dobaczewski J, Kortelainen M, Mizuyama K (2008) Phys Rev C 78:34306

    Article  Google Scholar 

  16. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063

    Article  CAS  Google Scholar 

  17. http://www.cse.anl.gov/Catalysis_and_Energy_Conversion/Computational_Thermochemistry.shtml. Accessed 1 Oct 2010

  18. Staroverov VN, Scuseria GE, Tao JM, Perdew JP (2003) J Chem Phys 119:12129

    Article  CAS  Google Scholar 

  19. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413

    Article  Google Scholar 

  20. Mortensen JJ, Ganduglia-Pirovano MV, Hansen LB, Hammer B, Stoltze P, Nørskov JK (1999) Surf Sci 422:8

    Article  CAS  Google Scholar 

  21. http://webbook.nist.gov/chemistry/. Accessed 1 Oct 2010

  22. Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71:035109

    Article  Google Scholar 

  23. Blöchl PE, Forst CJ, Schimpl J (2003) Bull Mater Sci 26:33

    Google Scholar 

  24. Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dulak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Hakkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) J Phys 22:253202

    CAS  Google Scholar 

  25. Madsen GKH (2007) Phys Rev B 75:195108

    Article  Google Scholar 

  26. Tipping ME (2004) Advanced lectures on machine learning. Springer, New York, pp 41–62

    Book  Google Scholar 

  27. Petzold V (2010) Ph.D. thesis, CAMD, Technical University of Denmark

  28. Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Christensen CH, Nørskov JK (2005) Science 307:555

    Article  CAS  Google Scholar 

  29. Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Törnqvist E, Nørskov JK (1999) Phys Rev Lett 83:1814

    Article  Google Scholar 

Download references

Acknowledgements

We thank James P. Sethna, Jens K. Nørskov, Karoliina Honkala, Andreas Møgelhøj, Jess Wellendorff, and Keld T. Lundgaard for many inspiring discussions. The authors acknowledge support from the Danish Center for Scientific Computing and the U.S. Department of Energy—Office of Basic Energy Sciences through the funding of SUNCAT. The Center for Atomic-scale Materials Design is sponsored by the Lundbeck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bligaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petzold, V., Bligaard, T. & Jacobsen, K.W. Construction of New Electronic Density Functionals with Error Estimation Through Fitting. Top Catal 55, 402–417 (2012). https://doi.org/10.1007/s11244-012-9801-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9801-7

Keywords

Navigation