Skip to main content
Log in

Mechanistic Investigation of Heterogeneous Catalysis by Transient Infrared Methods

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This paper provides an overview of the use of various transient infrared methods to determine the role of infrared observable species in the mechanisms of the NO–CO reaction, heterogeneous ethylene hydroformylation, and photocatalytic oxidation of ethanol. The transient infrared methods with a judicious choice of ways in changing the concentration of reactants and their isotope counterparts produce responses, allowing (i) identification of the spectators, (ii) determination of active adsorbed species, and (iii) verification of kinetic models and their parameters. The method has also been recently extended to monitor infrared absorbance of photogenerated electrons during photocatalysis, correlating variation in the concentration of photogenerated electrons and adsorbed species. The specific discussion focuses on limitations of the approaches and the type of mechanistic information that can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rabo JA (1993) Proceedings of the 10th international congress on catalysis, part A, international congress on catalysis. Akademiai Kiado, Budapest, p 1

  2. Tamaru K (1991) Dynamic relaxation methods in heterogeneous catalysis. In Anderson JR, Boundar M (eds) Catalysis: science and technology, vol 9. Springer, Berlin, Heidelberg, New York, p 87

  3. Haller GL, Coulston GW (1991) Dynamics of heterogeneously catalyzed reactions. In Anderson JR, Boundar M (eds) Catalysis: science and technology, vol 9. Springer, Berlin, Heidelberg, New York, p 131

  4. Tamaru K (2004) Proc Jpn Acad Ser B 80:119

    Google Scholar 

  5. Chuang SSC, Balakos MW, Krishnamurthy R, Srinivas G (1994) Stud Surf Sci Catal 81:467

    Google Scholar 

  6. Chuang SSC, Brundage MA, Balakos MW (1997) Appl Catal A 151:333

    Google Scholar 

  7. Somorjai GA (1990) J Phys Chem 94:1013

    Google Scholar 

  8. Campbell CT (1989) Adv Catal 36:1

  9. Madix RJ, Canning NDS (1988) J Phys Chem 88:2437

    Google Scholar 

  10. Somorjai GA (1990) Catal Lett 7:169

  11. Somorjai GA, McCrea KR, Zhu J (2002) Top Catal 18:157

  12. Barteau MA (1993) J Vac Sci Technol A 11:2162

    Google Scholar 

  13. Yamada T, Onishi T, Tamaru K (1985) Surf Sci 157:L389

  14. Winslow P, Bell AT (1984) J Catal 86:158

  15. Lombardo SJ, Bell AT (1991) Surf Sci 245:213

  16. Shido T, Iwasawa Y (1993) J Catal 141:71

    Google Scholar 

  17. Iwasawa Y (1997) Acc Chem Res 30:103

    Google Scholar 

  18. Tada M, Taniike T, Iwasawa Y (2007) J Phys Chem C 111:11663

    Google Scholar 

  19. Akhter S, White JM (1988) J Vac Sci Technol A 6:864

    Google Scholar 

  20. Srinivas G, Chuang SSC, Debnath S (1994) J Catal 148:748

    Google Scholar 

  21. Srinivas G, Chuang SSC (1994) Preprint of NOx reduction symposium. In ACS national meeting. Division of Petroleum Chemistry, Inc., Washington DC, p 167

  22. Solymosi F, Bansagi T (1993) J Phys Chem 97:10133

    Google Scholar 

  23. Krause KR, Schmidt LD (1993) J Catal 140:424

  24. Delgass WN, Haller GL, Kellerman R, Lunsford JH (1979) Spectroscopy in heterogeneous catalysis. Academic Press, New York, p 341

  25. Vannice MA (1982) In: Anderson JR, Boundar M (eds) Catalysis: science and technology, vol 3. Springer, New York, p 139

    Google Scholar 

  26. Yates JTJ, Madey TE (1987) Vibrational spectroscopy of molecules on surfaces. Plenum Press, New York

    Google Scholar 

  27. Airaksinen SMK, Krause AOI, Sainio J, Lahtinen J, Chao K.-j, Guerrero-Perez MO, Banares MA (2003) Phys Chem Chem Phys 5:4371

    Google Scholar 

  28. Hicks RF, Kellner CS, Savatsky BJ, Hecker WC, Bell AT (1981) J Catal 71:216

    Google Scholar 

  29. Kaul DJ, Wolf EE (1984) J Catal 89:348

  30. Li YE, Gonzalez RD (1988) Catal Lett 1:229

  31. Venter JJ, Vannice MA (1989) J Phys Chem 93:4158

    Google Scholar 

  32. Edwards JF, Schrader GL (1981) Appl Spectrosc 35:559

  33. Moser WR, Cnossen JE, Wang AW, Krouse SA (1985) J Catal 95:21

    Google Scholar 

  34. Dalla Betta RA, Shelef M (1977) J Catal 48:111

  35. Arakawa H, Fukushima T, Ichikawa M (1986) Appl Spectrosc 40:884

  36. King DL (1980) J Catal 61:77

    Google Scholar 

  37. Rode EJ, Davis ME, Hanson BE (1985) J Catal 96:574

    Google Scholar 

  38. Fujimoto K, Kameyama M, Kunugi T (1980) J Catal 61:7

    Google Scholar 

  39. Li YE, Gonzalez RD (1988) J Phys Chem 92:1589

    Google Scholar 

  40. Brundage MA, Chuang SSC (1996) J Catal 164:94

  41. Brundage MA, Chuang SSC (1998) J Catal 174:164

  42. Shannon SL, Goodwin JG Jr (1995) Chem Rev (Washington, DC) 95:677

  43. Lohitharn N, Goodwin JG (2008) J Catal 257:142

  44. Fogler HS (2006) Elements of chemical reaction engineering. Prentice Hall. Person Ed. Inc, Upper Saddle River

    Google Scholar 

  45. Levenspiel O (1998) Chemical reaction engineering, 3rd edn. p 656

  46. Koerts T, Van Santen RA (1992) J Catal 134:13

  47. De Pontes M, Yokomizo GH, Bell AT (1987) J Catal 104:147

    Google Scholar 

  48. Hoost TE, Goodwin JG Jr (1992) J Catal 134:678

  49. Biloen P, Helle JN, Van den Berg FGA, Sachtler WMH (1983) J Catal 81:450

  50. Peil KP, Goodwin JG Jr, Marcelin G (1989) J Phys Chem 93:5977

    Google Scholar 

  51. Srinivas G, Chuang SSC, Balakos MW (1993) AIChE J 39:530

    Article  CAS  Google Scholar 

  52. Efstathiou AM, Bennett CO (1989) J Catal 120:137

  53. Krishna KR, Bell AT (1993) J Catal 139:104

  54. Mims CA, McCandlish LE (1987) J Phys Chem 91:929

    Google Scholar 

  55. Smith MR, Ozkan US (1993) J Catal 142:226

  56. Happel J (1986) Isotopic assessment of heterogeneous catalysis. Academic Press, New York

    Google Scholar 

  57. Balakos MW, Chuang SSC, Srinivas G (1993) J Catal 140:281

    Article  CAS  Google Scholar 

  58. Schwarz JA, Falconer JL (1990) Catal Today 7:1990

    Google Scholar 

  59. Balakos MW, Chuang SSC (1995) J Catal 151:253

  60. Chuang SSC, Krishnamurthy R, Srinivas G (1995) ACS Symp Ser 587:183

  61. Taylor KC (1993) Catal Rev—Sci Eng 35:457

    Google Scholar 

  62. Farrauto RJ, Heck RM, Speronello BK (1992) Chem Eng News 70:34

    Google Scholar 

  63. Iwamoto M (1990) Future opportunities in catalytic and separation technology. Elsevier, Amsterdam, Oxford, New York, Tokyo, p 121

    Google Scholar 

  64. Hecker WC, Bell AT (1983) J Catal 84:200

  65. Oh SH, Fisher GB, Carpenter JE, Goodman DW (1986) J Catal 100:360

    Google Scholar 

  66. Schwartz SB, Fisher GB, Schmidt LD (1988) J Phys Chem 92:389

    Google Scholar 

  67. Zaera F (2002) J Phys Chem B 106:4043

    Google Scholar 

  68. Rainer DR, Vesecky SM, Koranne M, Oh WS, Goodman DW (1997) J Catal 167:234

  69. Krishnamurthy R, Chuang SSC, Balakos MW (1995) J Catal 157:512

    Google Scholar 

  70. Solymosi F, Bansagi T, Novak E (1988) J Catal 112:183

  71. Bajusz I-G, Goodwin JG Jr, Galloway D, Greenlay N (1998) Langmuir 14:1846

    Google Scholar 

  72. Yu Y, He H, Feng Q, Gao H, Yang X (2004) Appl Catal B 49:159

  73. Chuang SSC, Pien SI (1992) J Catal 135:618

  74. Almusaiteer KA, Chuang SSC, Tan C-D (2000) J Catal 189:247

    Google Scholar 

  75. Almusaiteer K, Chuang SSC (1998) J Catal 180:161

  76. Zambelli T, Wintterlin J, Trost J, Ertl G (1996) Science (Washington, DC) 273:1688

  77. Gates BC (1992) Catalytic chemistry. John Wiley and Sons, Inc., New York, p 458

  78. Hecker WC, Bell AT (1984) J Catal 85:389

  79. Rasko J, Solymosi F (1981) J Catal 71:219

  80. Solymosi F, Bansagi T (1979) J Phys Chem 83:552

    Google Scholar 

  81. Unland ML (1973) J Phys Chem 77:1952

  82. Unland ML (1973) J Catal 31:459

    Google Scholar 

  83. Chuang SSC, Stevens RW Jr, Khatri R (2005) Top Catal 32:225

    Article  CAS  Google Scholar 

  84. Chuang SSC (1990) Appl Catal 66:L1

  85. Chuang SSC, Pien SI, Narayanan R (1990) Appl Catal 57:241

  86. Chuang SSC, Pien SI, Sze C (1990) J Catal 126:187

    Google Scholar 

  87. Chuang SSC, Pien SI (1992) J Catal 138:536

  88. Chuang SSC, Pien SI (1991) J Catal 128:569

  89. Balakos MW, Chuang SSC (1995) J Catal 151:266

  90. Balakos MW, Chuang SSC, Srinivas G (1993) J Catal 140:281

  91. Chuang SSC, Brundage MA, Balakos MW, Srinivas G (1995) Appl Spectrosc 49:1151

  92. Brundage MA, Balakos MW, Chuang SSC (1998) J Catal 173:122

    Google Scholar 

  93. Maira AJ, Coronado JM, Augugliaro V, Yeung KL, Conesa JC, Soria J (2001) J Catal 202:413

    Google Scholar 

  94. Liao L-F, Wu W-C, Chen C-Y, Lin J-L (2001) J Phys Chem B 105:7678

    Google Scholar 

  95. Coronado JM, Kataoka S, Tejedor-Tejedor I, Anderson MA (2003) J Catal 219:219

    Google Scholar 

  96. Cao S, Yeung KL, Yue P-L (2007) Appl Catal B 76:64

    Google Scholar 

  97. Yeung KL, Yau ST, Maira AJ, Coronado JM, Soria J, Yue PL (2003) J Catal 219:107

    Google Scholar 

  98. Ollis DF (1998) Cattech 2:149

  99. Yu Z, Chuang SSC (2008) Appl Catal B 83:277

    Google Scholar 

  100. Wu JCS, Wu T-H, Chu T, Huang H, Tsai D (2008) Top Catal 47:131

  101. Blount MC, Buchholz JA, Falconer JL (2001) J Catal 197:303

    Google Scholar 

  102. Panayotov DA, Yates JT Jr (2005) Chem Phys Lett 410:11

    Google Scholar 

  103. Szczepankiewicz SH, Colussi AJ, Hoffmann MR (2000) J Phys Chem B 104:9842

    Google Scholar 

  104. Szczepankiewicz SH, Moss JA, Hoffmann MR (2002) J Phys Chem B 106:2922

    Google Scholar 

  105. Berger T, Sterrer M, Diwald O, Knoezinger E, Panayotov D, Thompson TL, Yates JT Jr (2005) J Phys Chem B 109:6061

    Google Scholar 

  106. Yu Z, Chuang SSC (2007) J Phys Chem C 111:13813

    Google Scholar 

  107. Yu Z, Chuang SSC (2007) J Catal 246:118

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven S. C. Chuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuang, S.S.C., Guzman, F. Mechanistic Investigation of Heterogeneous Catalysis by Transient Infrared Methods. Top Catal 52, 1448–1458 (2009). https://doi.org/10.1007/s11244-009-9317-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9317-y

Keywords

Navigation