Skip to main content

Advertisement

Log in

In situ and Operando Spectroscopies in Photocatalysis: Powerful Techniques for a Better Understanding of the Performance and the Reaction Mechanism

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

In photocatalysis, a set of elemental steps are involved together at different timescales to govern the overall efficiency of the process. These steps are divided as follow: (1) photon absorption and excitation (in femtoseconds), (2) charge separation (femto- to picoseconds), (3) charge carrier diffusion/transport (nano- to microseconds), and (4 and 5) reactant activation/conversion and mass transfer (micro- to milliseconds). The identification and quantification of these steps, using the appropriate tool/technique, can provide the guidelines to emphasize the most influential key parameter that improve the overall efficiency and to develop the “photocatalyst by design” concept. In this review, the identification/quantification of reactant activation/conversion and mass transfer (steps 4 and 5) is discussed in details using the in situ/operando techniques, especially the infrared (IR), Raman, and X-ray absorption spectroscopy (XAS). The use of these techniques in photocatalysis was highlighted by the most recent and conclusive case studies which allow a better characterization of the active site and reveal the reaction pathways in order to establish a structure–performance relationship. In each case study, the reaction conditions and the reactor design for photocatalysis (pressure, temperature, concentration, etc.) were thoroughly discussed. In the last part, some examples in the use of time-resolved techniques (time-resolved FTIR, photoluminescence, and transient absorption) are also presented as an author’s guideline to study the elemental steps in photocatalysis at shorter timescale (ps, ns, and µs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Copyright with the permission from Refs. [21, 22])

Scheme 1
Scheme 2
Fig. 2

(Copyright with permission from Refs. [24, 25])

Fig. 3

(Copyright with permission from Ref. [27])

Fig. 4

(Copyright with the authors permission [29, 30])

Fig. 5

(Copyright with the authors permission [32])

Fig. 6

(Copyright with the authors permission [47])

Fig. 7

(Copyright with the authors permission [48])

Fig. 8

(Copyright with the authors permission [49])

Fig. 9

(Copyright with the authors permission [28, 51, 53]

Fig. 10

(Copyright with the authors permission [21])

Fig. 11

(Copyright with the authors permission [76])

Fig. 12

(Copyright with permission from Refs. [68, 78])

Scheme 3

(Copyright with the authors permission [80])

Fig. 13

(Copyright with permission from Refs. [4, 82])

Fig. 14

(Copyright with the authors permission [85, 86])

Fig. 15

(Copyright with permission from Ref. [87, 88])

Fig. 16

(Copyright with permission from Refs. [89, 90])

Fig. 17

(Copyright with the authors permission [72])

Fig. 18

(Copyright with the authors permission [73])

Fig. 19

(Copyright with the authors permission [74])

Fig. 20

(Copyright with the authors permission [92])

Scheme 4
Fig. 21

(Copyright with permission from Refs. [5, 107])

Fig. 22

(Copyright with permission from Ref. [109])

Fig. 23

(Copyright with permission from Refs. [34, 110])

Similar content being viewed by others

References

  1. Turro NJ, Ramamurthy V, Scaiano JC (2017) Modern molecular photochemistry of organic molecules. Viva Books, University Science Books, Sausalito. https://doi.org/10.1002/anie.201003826

    Book  Google Scholar 

  2. Takanabe K (2017) Photocatalytic water splitting: quantitative approaches toward photocatalyst by design. ACS Catal 7(11):8006–8022. https://doi.org/10.1021/acscatal.7b02662

    Article  CAS  Google Scholar 

  3. Coy E, Siuzdak K, Grądzka-Kurzaj I, Sayegh S, Weber M, Ziółek M, Iatsunskyi I (2021) Exploring the effect of BN and BN bridges on the photocatalytic performance of semiconductor heterojunctions: enhancing carrier transfer mechanism. Appl Mater Today 24:101095. https://doi.org/10.1016/j.apmt.2021.101095

    Article  Google Scholar 

  4. El-Roz M, Bazin P, Daturi M, Thibault-Starzyk F (2013) Operando infrared (IR) coupled to steady-state isotopic transient kinetic analysis (SSITKA) for photocatalysis: reactivity and mechanistic studies. ACS Catal 3(12):2790–2798. https://doi.org/10.1021/cs4006088

    Article  CAS  Google Scholar 

  5. Schnee J, Daturi M, El-Roz M (2020) Ultrafast time-resolved quantum cascade laser diagnostic for revealing the role of surface formate species in the photocatalytic oxidation of methanol. Catal Sci Technol 10(16):5618–5627. https://doi.org/10.1039/D0CY00865F

    Article  CAS  Google Scholar 

  6. Kim DW, Leem YA, Yoo SD, Woo DH, Lee DH, Woo JC (1993) Measurement of the exciton binding energy in a narrow GaAs–AlxGa1−xAs quantum well by photoluminescence excitation spectroscopy. Phys Rev B 47(4):2042. https://doi.org/10.1103/PhysRevB.47.2042

    Article  CAS  Google Scholar 

  7. Inoue Y (2009) Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d 0-and d 10-related electronic configurations. Energy Environ Sci 2(4):364–386. https://doi.org/10.1039/B816677N

    Article  CAS  Google Scholar 

  8. Weckhuysen BM (2002) Snapshots of a working catalyst: possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. Chem Commun 2:97–110. https://doi.org/10.1039/B107686H

    Article  Google Scholar 

  9. Weckhuysen BM (2015) Studying birth, life and death of catalytic solids with operando spectroscopy. Natl Sci Rev 2(2):147–149. https://doi.org/10.1093/nsr/nwv020

    Article  Google Scholar 

  10. Jones CW, Tao F, Garland MV (2012) Introduction to special issue on operando and in situ studies of catalysis. ACS Catal. https://doi.org/10.1021/cs3006692

    Article  Google Scholar 

  11. Bañares MA (2005) Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal Today 100(1–2):71–77. https://doi.org/10.1016/j.cattod.2004.12.017

    Article  CAS  Google Scholar 

  12. Ferri D (2021) Toward operando infrared spectroscopy of heterogeneous catalysts. Heterog Catal Adv Des Char Appl 1:311–338. https://doi.org/10.1002/9783527813599.ch18

    Article  Google Scholar 

  13. Rasmussen SB, Perez-Ferreras S, Bañares MA, Bazin P, Daturi M (2013) Does pelletizing catalysts influence the efficiency number of activity measurements? Spectrochemical engineering considerations for an accurate operando study. ACS Catal 3(1):86–94. https://doi.org/10.1021/cs300687v

    Article  CAS  Google Scholar 

  14. Harrick NJ (1979) Internal reflection spectroscopy. Harrick Scientific Corporation, New York

    Google Scholar 

  15. Vimont A, Thibault-Starzyk F, Daturi M (2010) Analyzing and understanding the active site by IR spectroscopy. Chem Soc Rev 39(12):4928–4950. https://doi.org/10.1039/B919543M

    Article  CAS  PubMed  Google Scholar 

  16. Lercher JA, Grundling C, Eder-Mirth G (1996) Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules. Catal Today 27(3):353–376. https://doi.org/10.1016/0920-5861(95)00248-0

    Article  CAS  Google Scholar 

  17. Hadjiivanov KI, Vayssilov GN (2002) Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Elsevier, New York. https://doi.org/10.1016/S0360-0564(02)47008-3

    Book  Google Scholar 

  18. Ivanova E, Mihaylov M, Aleksandrov HA, Daturi M, Thibault-Starzyk F, Vayssilov GN, Hadjiivanov KI (2007) Unusual carbonyl−nitrosyl complexes of Rh2+ in Rh−ZSM-5: a combined FTIR spectroscopy and computational study. J Phys Chem C 111(28):10412–10418. https://doi.org/10.1021/jp067531f

    Article  CAS  Google Scholar 

  19. Kunkeler PJ, Zuurdeeg BJ, Van Der Waal JC, van Bokhoven JA, Koningsberger DC, Van Bekkum H (1998) Zeolite beta: the relationship between calcination procedure, aluminum configuration, and Lewis acidity. J Catal 180(2):234–244. https://doi.org/10.1006/jcat.1998.2273

    Article  CAS  Google Scholar 

  20. Drenchev NL, Chakarova KK, Lagunov OV, Mihaylov MY, Ivanova EZ, Strauss I, Hadjiivanov KI (2016) In situ FTIR spectroscopy as a tool for investigation of gas/solid interaction: water-enhanced CO2 adsorption in UiO-66 metal-organic framework. MyJoVE Corporation, London. https://doi.org/10.3791/60285

    Book  Google Scholar 

  21. Liu L, Zhao C, Miller JT, Li Y (2017) Mechanistic study of CO2 photoreduction with H2O on Cu/TiO2 nanocomposites by in situ X-ray absorption and infrared spectroscopies. J Phys Chem C 121(1):490–499. https://doi.org/10.1021/acs.jpcc.6b10835

    Article  CAS  Google Scholar 

  22. El-Roz M, Lakiss L, El Fallah J, Lebedev OI, Thibault-Starzyk F, Valtchev V (2013) Incorporation of clusters of titanium oxide in Beta zeolite structure by a new cold TiCl4-plasma process: physicochemical properties and photocatalytic activity. Phys Chem Chem Phys 15(38):16198–16207. https://doi.org/10.1039/C3CP52478G

    Article  CAS  PubMed  Google Scholar 

  23. Deo G, Turek AM, Wachs IE, Huybrechts DR, Jacobs PA (1993) Characterization of titania silicalites. Zeolites 13(5):365–373. https://doi.org/10.1016/0144-2449(93)90151-r

    Article  CAS  Google Scholar 

  24. Fu C, Li F, Zhang J, Li D, Qian K, Liu Y, Huang W (2021) Site sensitivity of interfacial charge transfer and photocatalytic efficiency in photocatalysis: methanol oxidation on anatase TiO2 nanocrystals. Angew Chem Int Ed 133(11):6225–6234. https://doi.org/10.1002/ange.202014037

    Article  Google Scholar 

  25. Zhang H, Li Y, Wang J, Wu N, Sheng H, Chen C, Zhao J (2021) An unprecedent hydride transfer pathway for selective photocatalytic reduction of CO2 to formic acid on TiO2. Appl Catal B Environ 284:119692. https://doi.org/10.1016/j.apcatb.2020.119692

    Article  CAS  Google Scholar 

  26. Subbotina IRF, Barsukov DVE (2020) Direct evidence of the key role of UV-formed peroxide species in photocatalytic gas–solid oxidation in air on anatase TiO2 particles. Phys Chem Chem Phys 22(4):2200–2211. https://doi.org/10.1039/C9CP04728J

    Article  CAS  PubMed  Google Scholar 

  27. Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T (2017) Selective nitrate-to-ammonia transformation on surface defects of titanium dioxide photocatalysts. ACS Catal 7:3713–3720. https://doi.org/10.1021/acscatal.7b00611

    Article  CAS  Google Scholar 

  28. Dolamic I, Bürgi T (2007) Photocatalysis of dicarboxylic acids over TiO2: an in-situ ATR-IR study. J Catal 248(2):268–276. https://doi.org/10.1016/j.jcat.2007.03.020

    Article  CAS  Google Scholar 

  29. Almeida AR, Moulijn JA, Mul G (2011) Photocatalytic oxidation of cyclohexane over TiO2: evidence for a Mars−Van Krevelen mechanism. J Phys Chem C 115(4):1330–1338. https://doi.org/10.1021/jp107290r

    Article  CAS  Google Scholar 

  30. Almeida AR, Moulijn JA, Mul G (2008) In situ ATR-FTIR study on the selective photo-oxidation of cyclohexane over anatase TiO2. J Phys Chem C 112(5):1552–1561. https://doi.org/10.1021/jp077143t

    Article  CAS  Google Scholar 

  31. Belhadj H, Hakki A, Robertson PKJ, Bahnemann DW (2015) In situ ATR-FTIR study of H2O and D2O adsorption on TiO2 under UV irradiation. Phys Chem Chem Phys 17:22940–22946. https://doi.org/10.1039/C5CP03947A

    Article  CAS  PubMed  Google Scholar 

  32. Telegeiev I, Thili O, Lanel A, Bazin P, Levaque Y, Fernandez C, El-Roz M (2018) In situ FTIR reactor for monitoring gas-phase products during a (photo) catalytic reaction in the liquid phase. Anal Chem 90(24):14586–14592. https://doi.org/10.1021/acs.analchem.8b04754

    Article  CAS  PubMed  Google Scholar 

  33. Li SY, Meng S, Zou X, El-Roz M, Telegeev I, Thili O, Zhu G (2019) Rhenium-functionalized covalent organic framework photocatalyst for efficient CO2 reduction under visible light. Micropor Mesopor Mat 285:195–201. https://doi.org/10.1016/j.micromeso.2019.05.026

    Article  CAS  Google Scholar 

  34. Nasrallah H, Lyu P, Maurin G, El-Roz M (2021) Highly efficient CO2 reduction under visible-light on non-covalent Ru⋯ Re assembled photocatalyst: evidence on the electron transfer mechanism. J Catal 404:46–55. https://doi.org/10.1016/j.jcat.2021.09.007

    Article  CAS  Google Scholar 

  35. Hess C (2021) New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chem Soc Rev 50(5):3519–3564. https://doi.org/10.1039/D0CS01059F

    Article  CAS  PubMed  Google Scholar 

  36. Ricci PC, Carbonaro CM, Stagi L, Salis M, Casu A, Enzo S, Delogu F (2013) Anatase-to-rutile phase transition in TiO2 nanoparticles irradiated by visible light. J Phys Chem C 117(15):7850–7857. https://doi.org/10.1021/jp312325h

    Article  CAS  Google Scholar 

  37. Swaminathan S, Rao VG, Bera JK, Chandra M (2021) The pivotal role of hot carriers in plasmonic catalysis of C−N bond forming reaction of amines. Angew Chem Int Ed 60(22):12532–12538. https://doi.org/10.1002/anie.202101639

    Article  CAS  Google Scholar 

  38. Feng K, Wang Y, Guo M, Zhang J, Li Z, Deng T, Zhang Z, Yan B (2021) In-situ/operando techniques to identify active sites for thermochemical conversion of CO2 over heterogeneous catalysts. J Energy Chem 62:153–171. https://doi.org/10.1016/j.jechem.2021.03.054

    Article  Google Scholar 

  39. Chakrabarti A, Ford ME, Gregory D, Hu R, Keturakis CJ, Lwin S, Wachs IE (2017) A decade + of operando spectroscopy studies. Catal Today 283:27–53. https://doi.org/10.1016/j.cattod.2016.12.012

    Article  CAS  Google Scholar 

  40. Kookhaee H, Tesema TE, Habteyes TG (2020) Switching a plasmon-driven reaction mechanism from charge transfer to adsorbate electronic excitation using surface ligands. J Phys Chem C 124(41):22711–22720. https://doi.org/10.1021/acs.jpcc.0c07479

    Article  CAS  Google Scholar 

  41. Cheng Y, Wang W, Yao L, Wang J, Han H, Zhu T, Liang Y, Fu J, Wang Y (2020) 3D Ag/ZnO microsphere SERS substrate with ultra-sensitive, recyclable and self-cleaning performances: application for rapid in site monitoring catalytic dye degradation and insight into the mechanism. Colloids Surf A Physicochem Eng Asp 607:125507. https://doi.org/10.1016/j.colsurfa.2020.125507

    Article  CAS  Google Scholar 

  42. Jiang P, Dong Y, Yang L, Zhao Y, Xie W (2019) Hot electron-induced carbon-halogen bond cleavage monitored by in situ surface-enhanced raman spectroscopy. J Phys Chem C 123(27):16741–16746. https://doi.org/10.1021/acs.jpcc.9b03238

    Article  CAS  Google Scholar 

  43. Kumari G, Kamarudheen R, Zoethout E, Baldi A (2021) Photocatalytic surface restructuring in individual silver nanoparticles. ACS Catal 11(6):3478–3486. https://doi.org/10.1021/acscatal.1c00478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qiu L, Pang GA, Zheng G, Bauer D, Wieland K, Haisch C (2020) Kinetic and mechanistic investigation of the photocatalyzed surface reduction of 4-nitrothiophenol observed on a silver plasmonic film via surface-enhanced raman scattering. ACS Appl Mater Interfaces 12(18):21133–21142. https://doi.org/10.1021/acsami.0c05977

    Article  CAS  PubMed  Google Scholar 

  45. Huang J, Niu W, Li C, Tan C, Yin P, Cheng H, Hu Z, Yang N, He Q, Nam G-H, Zhang H (2020) In-situ probing of crystal-phase-dependent photocatalytic activities of au nanostructures by surface-enhanced Raman spectroscopy. ACS Mater Lett 2(4):409–414. https://doi.org/10.1021/acsmaterialslett.0c00060

    Article  CAS  Google Scholar 

  46. Zhang G, Chen L, Fu X, Wang H (2018) Cellulose microfiber-supported TiO2@Ag nanocomposites: a dual-functional platform for photocatalysis and in situ reaction monitoring. Ind Eng Chem Res 57(12):4277–4286. https://doi.org/10.1021/acs.iecr.8b00006

    Article  CAS  Google Scholar 

  47. Zhang H, Wei J, Zhang X-G, Zhang Y-J, Radjenovica PM, Wu D-Y, Pan F, Tian Z-Q, Li J-F (2020) Plasmon-induced interfacial hot-electron transfer directly probed by Raman spectroscopy. Chem 6(3):689–702. https://doi.org/10.1016/j.chempr.2019.12.015

    Article  CAS  Google Scholar 

  48. Cai Z-F, Merino JP, Fang W, Kumar N, Richardson JO, De Feyter S, Zenobi R (2021) Molecular-level insights on reactive arrangement in on-surface photocatalytic coupling reactions using tip-enhanced Raman spectroscopy. JACS. https://doi.org/10.1021/jacs.1c11263

    Article  Google Scholar 

  49. Rößler M, Huth PU, Liauw MA (2020) Process analytical technology (PAT) as a versatile tool for real-time monitoring and kinetic evaluation of photocatalytic reactions. React Chem Eng 5(10):1992–2002. https://doi.org/10.1039/D0RE00256A

    Article  Google Scholar 

  50. Qian R, Zong H, Schneider J, Zhou G, Zhao T, Li Y, Pan JH (2019) Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview. Catal Today 335:78–90. https://doi.org/10.1016/j.cattod.2018.10.053

    Article  CAS  Google Scholar 

  51. Chiesa M, Giamello E, Livraghi S, Paganini MC, Polliotto V, Salvadori E (2019) Electron magnetic resonance in heterogeneous photocatalysis research. J Phys Condens Matter 31:444001. https://doi.org/10.1088/1361-648X/ab32c6

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Dai Y, Li H, Yin L, Hoffmann MR (2020) Proton-assisted electron transfer and hydrogenatom diffusion in a model system for photocatalytic hydrogen production. Commun Mater 1:66. https://doi.org/10.1038/s43246-020-00068-0

    Article  PubMed  PubMed Central  Google Scholar 

  53. Park H, Ou H-H, Colussi AJ, Hoffmann MR (2015) Artificial photosynthesis of C1–C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots. J Phys Chem A 119:4658–4666. https://doi.org/10.1021/jp511329d

    Article  CAS  PubMed  Google Scholar 

  54. Bonke SA, Risse T, Schnegg A, Brückner A (2021) In situ electron paramagnetic resonance spectroscopy for catalysis. Nat Rev Methods Primers 1:33. https://doi.org/10.1038/s43586-021-00031-4

    Article  CAS  Google Scholar 

  55. Al-Madanat O, Nunes BN, AlSalka Y, Hakki A, Curti M, Patrocinio AOT, Bahnemann DW (2021) Application of EPR spectroscopy in TiO2 and Nb2O5 photocatalysis. Catalysts 11(12):1514. https://doi.org/10.3390/catal11121514

    Article  CAS  Google Scholar 

  56. Zhang Y, Zhao J, Wang H, Xiao B, Zhang W, Zhao X, Liu Q (2022) Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56%. Nat Commun 13:58. https://doi.org/10.1038/s41467-021-27698-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shiraishi Y, Hashimoto M, Chishiro K, Moriyama K, Tanaka S, Hirai T (2020) Photocatalytic dinitrogen fixation with water on bismuth oxychloride in chloride solutions for solar-to-chemical energy conversion. J Am Chem Soc 142:7574–7583. https://doi.org/10.1021/jacs.0c01683

    Article  CAS  PubMed  Google Scholar 

  58. Koningsberger DC (1988) Principles, applications, techniques of EXAFS, SEXAFS and XANES. X-ray Absorp 20:20

    Google Scholar 

  59. Van Bokhoven JA, Lamberti C (2016) X-ray absorption and X-ray emission spectroscopy: theory and applications, vol 1. Wiley, New York

    Book  Google Scholar 

  60. Singh J, van Bokhoven JA (2010) Structure of alumina supported platinum catalysts of different particle size during CO oxidation using in situ IR and HERFD XAS. Catal Today 155(3–4):199–205. https://doi.org/10.1016/j.cattod.2009.12.006

    Article  CAS  Google Scholar 

  61. Deng J, Zhang Q, Lv X, Zhang D, Xu H, Ma D, Zhong J (2020) Understanding photoelectrochemical water oxidation with X-ray absorption spectroscopy. ACS Energy Lett 5(3):975–993. https://doi.org/10.1021/acsenergylett.9b02757

    Article  CAS  Google Scholar 

  62. Coronado JM, Fresno F, Iglesias-Juez A (2021) Approaching photocatalysts characterization under real conditions: in situ and operando studies. Materials science in photocatalysis. Elsevier, New York, pp 139–156. https://doi.org/10.1016/B978-0-12-821859-4.00030-1

    Chapter  Google Scholar 

  63. Zhao C, Liu L, Rao G, Zhao H, Wang L, Xu J, Li Y (2015) Synthesis of novel MgAl layered double oxide grafted TiO2 cuboids and their photocatalytic activity on CO2 reduction with water vapor. Catal Sci Technol 5(6):3288–3295. https://doi.org/10.1039/C5CY00216H

    Article  CAS  Google Scholar 

  64. Hernández-Alonso MD, García-Rodríguez S, Suárez S, Portela R, Sánchez B, Coronado JM (2013) Operando DRIFTS study of the role of hydroxyls groups in trichloroethylene photo-oxidation over titanate and TiO2 nanostructures. Catal Today 206:32–39. https://doi.org/10.1016/j.cattod.2012.01.029

    Article  CAS  Google Scholar 

  65. Saqlain S, Cha BJ, Kim SY, Sung JY, Choi MC, Seo HO, Kim YD (2021) Impact of humidity on the removal of volatile organic compounds over Fe loaded TiO2 under visible light irradiation: insight into photocatalysis mechanism by operando DRIFTS. Mater Today Commun 26:102119. https://doi.org/10.1016/j.mtcomm.2021.102119

    Article  CAS  Google Scholar 

  66. Hernández-Alonso MD, Tejedor-Tejedor I, Coronado JM, Anderson MA (2011) Operando FTIR study of the photocatalytic oxidation of methylcyclohexane and toluene in air over TiO2–ZrO2 thin films: influence of the aromaticity of the target molecule on deactivation. Appl Catal B Environ 101(3–4):283–293. https://doi.org/10.1016/j.apcatb.2010.09.029

    Article  CAS  Google Scholar 

  67. Bravo-Suárez JJ, Srinivasan PD (2017) Design characteristics of in situ and operando ultraviolet-visible and vibrational spectroscopic reaction cells for heterogeneous catalysis. Catal Rev 59(4):295–445. https://doi.org/10.1080/01614940.2017.1360071

    Article  CAS  Google Scholar 

  68. Hernández-Alonso MD, Tejedor-Tejedor I, Coronado JM, Anderson MA, Soria J (2009) Operando FTIR study of the photocatalytic oxidation of acetone in air over TiO2–ZrO2 thin films. Catal Today 143(3–4):364–373. https://doi.org/10.1016/j.cattod.2009.02.033

    Article  CAS  Google Scholar 

  69. El-Roz M, Kus M, Cool P, Thibault-Starzyk F (2012) New operando IR technique to study the photocatalytic activity and selectivity of TiO2 nanotubes in air purification: influence of temperature, UV intensity, and VOC concentration. J Phys Chem C 116(24):13252–13263. https://doi.org/10.1021/jp3034819

    Article  CAS  Google Scholar 

  70. Haselmann GM, Baumgartner B, Wang J, Wieland K, Gupta T, Herzig C, Eder D (2020) In situ Pt photodeposition and methanol photooxidation on Pt/TiO2: Pt-loading-dependent photocatalytic reaction pathways studied by liquid-phase infrared spectroscopy. ACS Catal 10(5):2964–2977. https://doi.org/10.1021/acscatal.9b05588

    Article  CAS  Google Scholar 

  71. Caudillo-Flores U, Muñoz-Batista MJ, Kubacka A, Fernández-García M (2018) Operando spectroscopy in photocatalysis. ChemPhotoChem 2(9):777–785. https://doi.org/10.1002/cptc.201800117

    Article  CAS  Google Scholar 

  72. Muñoz-Batista MJ, Motta Meira D, Colón G, Kubacka A, Fernández-García M (2018) Phase-contact engineering in mono-and bimetallic Cu-Ni Co-catalysts for hydrogen photocatalytic materials. Angew Chem Int Ed 57(5):1199–1203. https://doi.org/10.1002/anie.201709552

    Article  CAS  Google Scholar 

  73. Piccolo L, Afanasiev P, Morfin F, Len T, Dessal C, Rousset JL, Llorca J (2020) Operando X-ray absorption spectroscopy investigation of photocatalytic hydrogen evolution over ultradispersed Pt/TiO2 catalysts. ACS Catal 10(21):12696–12705. https://doi.org/10.1021/acscatal.0c03464

    Article  CAS  Google Scholar 

  74. Spanu D, Minguzzi A, Recchia S, Shahvardanfard F, Tomanec O, Zboril R, Altomare M (2020) An Operando X-ray absorption spectroscopy study of a NiCu-TiO2 photocatalyst for H2 evolution. ACS Catal 10(15):8293–8302. https://doi.org/10.1021/acscatal.0c01373

    Article  CAS  Google Scholar 

  75. Wu JC, Cheng YT (2006) In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation. J Catal 237(2):393–404. https://doi.org/10.1016/j.jcat.2005.11.023

    Article  CAS  Google Scholar 

  76. Wang K, Cao M, Lu J, Lu Y, Lau CH, Zheng Y, Fan X (2021) Operando DRIFTS-MS investigation on plasmon-thermal coupling mechanism of CO2 hydrogenation on Au/TiO2: the enhanced generation of oxygen vacancies. Appl Catal B Environ 296:120341. https://doi.org/10.1016/j.apcatb.2021.120341

    Article  CAS  Google Scholar 

  77. Yan T, Wang L, Liang Y, Makaremi M, Wood TE, Dai Y, Ozin GA (2019) Polymorph selection towards photocatalytic gaseous CO2 hydrogenation. Nat Commun 10(1):1–10. https://doi.org/10.1038/s41467-019-10524-2

    Article  CAS  Google Scholar 

  78. Kataoka S, Tejedor-Tejedor MI, Coronado JM, Anderson MA (2004) Thin-film transmission IR spectroscopy as an in-situ probe of the gas–solid interface in photocatalytic processes. J Photochem Photobiol 163(3):323–329. https://doi.org/10.1016/j.jphotochem.2004.01.004

    Article  CAS  Google Scholar 

  79. Lesage T, Verrier C, Bazin P, Saussey J, Daturi M (2003) Studying the NOx-trap mechanism over a Pt-Rh/Ba/Al2O3 catalyst by operando FT-IR spectroscopy. Phys Chem Chem Phys 5(20):4435–4440. https://doi.org/10.1039/B305874N

    Article  CAS  Google Scholar 

  80. El-Roz M, Bazin P, Thibault-Starzyk F (2013) An operando-IR study of photocatalytic reaction of methanol on new* BEA supported TiO2 catalyst. Catal Today 205:111–119. https://doi.org/10.1016/j.cattod.2012.08.023

    Article  CAS  Google Scholar 

  81. Hamoud HI, Lafjah M, Douma F, Lebedev OI, Djafri F, Valchev V, El-Roz M (2019) Photo-assisted SCR over highly dispersed silver sub-nanoparticles in zeolite under visible light: an Operando FTIR study. Sol Energy 189:244–253. https://doi.org/10.1016/j.solener.2019.07.020

    Article  CAS  Google Scholar 

  82. El-Roz M, Bazin P, Daturi M, Thibault-Starzyk F (2015) On the mechanism of methanol photooxidation to methylformate and carbon dioxide on TiO2: an operando-FTIR study. Phys Chem Chem Phys 17(17):11277–11283. https://doi.org/10.1039/C5CP00726G

    Article  CAS  PubMed  Google Scholar 

  83. El-Roz M, Lakiss L, Telegeiev I, Lebedev OI, Bazin P, Vicente A, Valtchev V (2017) High-visible-light photoactivity of plasma-promoted vanadium clusters on nanozeolites for partial photooxidation of methanol. ACS Appl Mater Interfaces 9(21):17846–17855. https://doi.org/10.1021/acsami.7b02161

    Article  CAS  PubMed  Google Scholar 

  84. Wolski L, El-Roz M, Daturi M, Nowaczyk G, Ziolek M (2019) Insight into methanol photooxidation over mono-(Au, Cu) and bimetallic (AuCu) catalysts supported on niobium pentoxide—an operando-IR study. Appl Catal B Environ 258:117978. https://doi.org/10.1016/j.apcatb.2019.117978

    Article  CAS  Google Scholar 

  85. Chen T, Ding Q, Wang X, Feng Z, Li C (2021) Mechanistic studies on photocatalytic overall water splitting over Ga2O3-based photocatalysts by operando MS-FTIR spectroscopy. J Phys Chem Lett 12(26):6029–6033. https://doi.org/10.1021/acs.jpclett.1c01621

    Article  CAS  PubMed  Google Scholar 

  86. Waheed A, Shi Q, Maeda N, Meier DM, Qin Z, Li G, Baiker A (2020) Strong activity enhancement of the photocatalytic degradation of an azo dye on Au/TiO2 doped with FeOx. Catalysts 10(8):933. https://doi.org/10.3390/catal10080933

    Article  CAS  Google Scholar 

  87. Chan HY, Nguyen VH, Wu J, Calvino-Casilda V, Bañares MA, Bai H (2015) Real-time Raman monitoring during photocatalytic epoxidation of cyclohexene over V-Ti/MCM-41 catalysts. Catalysts 5(2):518–533. https://doi.org/10.3390/catal5020518

    Article  CAS  Google Scholar 

  88. Yan X, Xu Y, Tian B, Lei J, Zhang J, Wang L (2018) Operando SERS self-monitoring photocatalytic oxidation of aminophenol on TiO2 semiconductor. Appl Catal B Environ 224:305–309. https://doi.org/10.1016/j.apcatb.2017.10.009

    Article  CAS  Google Scholar 

  89. Guo S, Li Y, Tang S, Zhang Y, Li X, Sobrido AJ, Wei B (2020) Monitoring hydrogen evolution reaction intermediates of transition metal dichalcogenides via operando Raman spectroscopy. Adv Funct Mater 30(35):2003035. https://doi.org/10.1002/adfm.202003035

    Article  CAS  Google Scholar 

  90. Wang QY, Chen YY, Ye RK, Liu Q, Chen HY, Yang H, Fang PP (2021) Instantly detecting catalysts’ hot spots temperature in situ during photocatalysis by operando raman spectroscopy. Anal Chem 93(46):15517–15524. https://doi.org/10.1021/acs.analchem.1c03666

    Article  CAS  PubMed  Google Scholar 

  91. Agostini G, Meira D, Monte M, Vitoux H, Iglesias-Juez A, Fernandez-Garcia M, Gorges B (2018) XAS/DRIFTS/MS spectroscopy for time-resolved operando investigations at high temperature. J Synchrotron Radiat 25(6):1745–1752. https://doi.org/10.1107/S160057751801305X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tsyganok A, Ghigna P, Minguzzi A, Naldoni A, Murzin V, Caliebe W, Ellis DS (2020) Operando X-ray absorption spectroscopy (XAS) observation of photoinduced oxidation in FeNi (oxy) hydroxide overlayers on hematite (α-Fe2O3) photoanodes for solar water splitting. Langmuir 36(39):11564–11572. https://doi.org/10.1021/acs.langmuir.0c02065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fracchia M, Cristino V, Vertova A, Rondinini S, Caramori S, Ghigna P, Minguzzi A (2019) Operando X-ray absorption spectroscopy of WO3 photoanodes. Electrochim Acta 320:134561. https://doi.org/10.1016/j.electacta.2019.134561

    Article  CAS  Google Scholar 

  94. Gao Y, Nie W, Wang X, Fan F, Li C (2020) Advanced space-and time-resolved techniques for photocatalyst studies. Chem Commun 56(7):1007–1021. https://doi.org/10.1039/C9CC07128H

    Article  CAS  Google Scholar 

  95. Paz Y (2019) Transient IR spectroscopy as a tool for studying photocatalytic materials. J Phys Condens Matter 31(50):503004. https://doi.org/10.1088/1361-648X/ab3eda

    Article  CAS  PubMed  Google Scholar 

  96. Li Q, Anpo M, Wang X (2020) Application of photoluminescence spectroscopy to elucidate photocatalytic reactions at the molecular level. Res Chem Intermed 46(10):4325–4344. https://doi.org/10.1007/s11164-020-04209-5

    Article  CAS  Google Scholar 

  97. Miao TJ, Tang J (2020) Characterization of charge carrier behavior in photocatalysis using transient absorption spectroscopy. J Chem Phys 152(19):194201. https://doi.org/10.1063/5.0008537

    Article  CAS  PubMed  Google Scholar 

  98. Van Schrojenstein Lantman EM, Deckert-Gaudig T, Mank AJ, Deckert V, Weckhuysen BM (2012) Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat Nanotechnol 7(9):583–586. https://doi.org/10.1038/nnano.2012.131

    Article  CAS  PubMed  Google Scholar 

  99. Dürr RN, Maltoni P, Tian H, Jousselme B, Hammarstrom L, Edvinsson T (2021) From NiMoO4 to γ-NiOOH: detecting the active catalyst phase by time resolved in situ and operando Raman spectroscopy. ACS Nano 15(8):13504–13515. https://doi.org/10.1021/acsnano.1c04126

    Article  CAS  PubMed Central  Google Scholar 

  100. Piercy VL, Saeed KH, Prentice AW, Neri G, Li C, Gardner AM, Cowan AJ (2021) Time-resolved Raman spectroscopy of polaron formation in a polymer photocatalyst. J Phys Chem Lett 12(44):10899–10905. https://doi.org/10.1021/acs.jpclett.1c03073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ismail AS, Uemura Y, Park SH, Kwon S, Kim M, Elnaggar H, De Groot FM (2020) Direct observation of the electronic states of photoexcited hematite with ultrafast 2p3d X-ray absorption spectroscopy and resonant inelastic X-ray scattering. Phys Chem Chem Phys 22(5):2685–2692. https://doi.org/10.1039/C9CP03374B

    Article  CAS  PubMed  Google Scholar 

  102. Baran T, Fracchia M, Vertova A, Achilli E, Naldoni A, Malara F, D’Acapito F (2016) Operando and time-resolved X-ray absorption spectroscopy for the study of photoelectrode architectures. Electrochim Acta 207:16–21. https://doi.org/10.1016/j.electacta.2016.04.153

    Article  CAS  Google Scholar 

  103. Lai TH, Katsumata KI, Hsu YJ (2021) In situ charge carrier dynamics of semiconductor nanostructures for advanced photoelectrochemical and photocatalytic applications. Nanophotonics 10(2):777–795. https://doi.org/10.1515/nanoph-2020-0472

    Article  CAS  Google Scholar 

  104. Zhang M, De Respinis M, Frei H (2014) Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat Chem 6(4):362–367. https://doi.org/10.1038/nchem.1874

    Article  CAS  PubMed  Google Scholar 

  105. Sheng H, Oh MH, Osowiecki WT, Kim W, Alivisatos AP, Frei H (2018) Carbon dioxide dimer radical anion as surface intermediate of photoinduced CO2 reduction at aqueous Cu and CdSe nanoparticle catalysts by rapid-scan FT-IR spectroscopy. JACS 140(12):4363–4371. https://doi.org/10.1021/jacs.8b00271

    Article  CAS  Google Scholar 

  106. Sheng H, Frei H (2016) Direct observation by rapid-scan FT-IR spectroscopy of two-electron-reduced intermediate of tetraaza catalyst [CoIIN4H (MeCN)]2+ converting CO2 to CO. JACS 138(31):9959–9967. https://doi.org/10.1021/jacs.6b05248

    Article  CAS  Google Scholar 

  107. Andersen LK, Frei H (2006) Dynamics of CO in mesoporous silica monitored by time-resolved step-scan and rapid-scan FT-IR spectroscopy. J Phys Chem B 110(45):22601–22607. https://doi.org/10.1021/jp0640326

    Article  CAS  PubMed  Google Scholar 

  108. Colbeau-Justin C, Valenzuela MA (2013) Time-resolved microwave conductivity (TRMC) a useful characterization tool for charge carrier transfer in photocatalysis: a short review. Rev Mex Fís 59(3):191–200

    CAS  Google Scholar 

  109. Toe CY, Lamers M, Dittrich T, Tahini HA, Smith SC, Scott J, Ng YH (2022) Facet-dependent carrier dynamics of cuprous oxide regulating the photocatalytic hydrogen generation. Mater Adv 3(4):2200–2212. https://doi.org/10.1039/D1MA00934F

    Article  CAS  Google Scholar 

  110. Wei Z, Wang W, Li W, Bai X, Zhao J, Tse EC, Zhu Y (2021) Steering electron-hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew Chem Int Ed 60(15):8236–8242. https://doi.org/10.1002/anie.202016170

    Article  CAS  Google Scholar 

  111. Portela R, Perez-Ferreras S, Serrano-Lotina A, Bañares MA (2018) Engineering operando methodology: understanding catalysis in time and space. Front Chem Sci Eng 12(3):509–536. https://doi.org/10.1007/s11705-018-1740-9

    Article  Google Scholar 

Download references

Acknowledgements

Mohamad El-Roz and Houeida Issa Hamoud acknowledge the Normandy Region (H2CO2 Project) for the financial support. Lukasz Wolski gratefully acknowledges the Foundation for Polish Science (FNP) (decision no. START 95.2021) and the Polish Minister of Education and Science (decision no. SMN/16/0997/2020) for the financial support. Ilia Pankin acknowledges the Ministry of Science and Higher Education of the Russian Federation for financial support (State assignment in the field of scientific activity, № 0852-2020-0019).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was prepared and written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Mohamad El-Roz.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Solar-driven catalysis”; edited by Nicolas Keller, Fernando Fresno, Agnieszka Ruppert and Patricia Garcia-Munoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issa Hamoud, H., Wolski, L., Pankin, I. et al. In situ and Operando Spectroscopies in Photocatalysis: Powerful Techniques for a Better Understanding of the Performance and the Reaction Mechanism. Top Curr Chem (Z) 380, 37 (2022). https://doi.org/10.1007/s41061-022-00387-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00387-5

Keywords

Navigation