Skip to main content
Log in

Induction and comparison of different in vitro morphogenesis pathways using embryo of cumin (Cuminum cyminum L.) as a model material

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

In this study, using cumin embryo as explant and manipulating plant growth regulators (PGRs) in regeneration medium, the main in vitro morphogenesis pathways including direct shoot organogenesis, direct somatic embryogenesis, indirect somatic embryogenesis, and indirect shoot organogenesis were obtained. The effects of PGRs, subculture, and light on the induction and progression of different pathways were studied in detail. Direct shoot organogenesis occurred on the meristematic zone, while direct somatic embryogenesis was observed on hypocotyl part of cumin embryo (more differentiated part). Application of BAP (0.1 mgl−1) was the sole triggering factor for induction of callus and indirect regeneration pathways. Exogenous IAA played the central role in the direct somatic embryogenesis pathway; however, the combined effects of IAA and NAA along with the high endogenous cytokinin level resulted in direct shoot organogenesis. Subculturing revealed accelerating effects on direct somatic embryogenesis pathway and callus formation. Conversely, subculturing had negative effect on direct shoot organogenesis pathway. In certain combinations of PGRs, like 0.4 mgl−1 IAA + 0.4 mgl−1 NAA, co-induction and co-regeneration of different pathways were observed. Investigation of genotype dependencies of different pathways showed that direct pathways are more genotype-dependent, stable, and faster than indirect pathways. This research presents the embryo of cumin as a convenient model material for induction and comparison of different morphogenesis pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BAP:

6-benzylaminopurine

IAA:

Indole-3-acetic acid

NAA:

α-naphthaleneacetic acid

PGR:

Plant growth regulator

References

  • Arteca RN (1996) Plant growth substances. Chapman & Hall Inc, New York, USA, pp 131–140

    Google Scholar 

  • Bregitzer P, Tonks D (2003) Inheritance and expression of transgenes in barley. Crop Sci 43:4–12

    Article  CAS  Google Scholar 

  • Cano EA, Prez-Alfocea F, Moreno V, Caro M, Bolarin MC (1998) Evaluation of salt tolerance in cultivated and wild tomato species through in vitro shoot apex culture. Plant Cell Tiss Organ Cult 53:19–26

    Article  Google Scholar 

  • Chang TT (1985) Germplasm enhancement and utilization. Iowa St J Res 59:399–424

    Google Scholar 

  • Choi HW, Lemaux PG, Cho MJ (2000) Increased chromosomal variation in transgenic versus nontransgenic barley (Hordeum vulgare L.) plants. Crop Sci 40:524–533

    Article  Google Scholar 

  • De Almeida WAB, de AA Mourao Filho F, Mendes BMJ, Rodriguez APM (2006) Histological characterization of in vitro adventitious organogenesis in Citrus sinensis. Biologia Plantarum 50:321–325

  • Dolendro-Singh N, Sahoo L, Sarin NB, Jaiwal PK (2003) The effect of TDZ on organogenesis and somatic embryogenesis in pigeonpea (Cajanus cajan L. Millsp). Plant Sci 164:341–347

    Article  CAS  Google Scholar 

  • Ebrahimie E, Habashi AA, Ghareyazie B, Ghannadha M, Mohammadie M (2003) A rapid and efficient method for regeneration of plantlets from embryo explants of cumin (Cuminum cyminum L.). Plant Cell Tiss Organ Cult 75:19–25

    Article  CAS  Google Scholar 

  • Ebrahimie E, Habashi AA, Mohammadie-Dehcheshmeh M, Ghannadha M, Ghareyazie B, Yazdi-Amadi (2006) Direct shoot regeneration from mature embryo as a rapid and genotype-independent pathway in tissue culture of heterogeneous diverse sets of cumin (Cuminum cyminum L.) genotypes. In vitro Cell Dev Biol-Plant 42:455–460

    Article  CAS  Google Scholar 

  • Eudes E, Acharya S, Laroche A, Selinger LB, Cheng KJ (2003) A novel method to induce direct somatic embryogenesis, secondary embryogenesis and regeneration of fertile green cereal plants. Plant Cell Tiss Organ Cul 73:147–153

    Article  CAS  Google Scholar 

  • Fowler MR, Ong LM, Russinova E, Atanassov AI, Scott NW, Slater A, Elliott MC (1998) Early changes in gene expression during direct somatic embryogenesis in alfalfa revealed by RAP-PCR. J Exp Bot 49:249–253

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Krens FA, Keizer LCP, Capel IEM (1997) Transgenic caraway, Carum carvi L.: a model species for metabolic engineering. Plant Cell Rep 17:39–43

    Article  CAS  Google Scholar 

  • Laparra H, Bronner R, Hahne G (1997) Histological analysis of somatic embryogenesis induced in leaf explants of Helianthus smithii Heiser. Protoplasma 196:1–11

    Article  Google Scholar 

  • Leyser O (1999) Plant hormones: ins and outs of auxin transport. Curr Biol 9:8–10

    Article  Google Scholar 

  • McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth of and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Musgrave ME (1994) Cytokinins and oxidative processes. In: Mokand DWS, Mok MC (eds) Cytokinins: chemistry, activity, and function. CRC Press, Inc., Boca Raton, FL, pp 167–178

    Google Scholar 

  • Petitprez M, Sarrafi A, Flores–Berrios E, XuHan X, Briere C, Gentzbittel L (2005) Somatic embryogenesis by liquid culture of epidermal layers in sunflower: from genetic control to cell development. Plant Cell Tiss Organ Cul 81:331–337

    Article  Google Scholar 

  • Quiroz-Figueroa FR, Fuentes-Cerda CFJ, Rojas-Herrera R, Loyola-Vargas VM (2002) Histological studies on the developmental stages and differentiation of two different somatic embryogenesis systems of Coffea Arabica. Plant Cell Rep 20:1141–1149

    Article  CAS  Google Scholar 

  • Sriskandarajah S, Prinsen E, Motyka V, Dobrev PI, Serek M (2006) Regenerative capacity of Cacti Schlumbergera and Rhipsalidopsis in relation to endogenous phytohormones, cytokinin oxidase/dehydrogenase, and peroxidase activities. J Plant Growth Regul 25:79–88

    Article  CAS  Google Scholar 

  • Sticklen MB, Oraby HF (2005) Shoot apical meristem: a sustainable explant for genetic transformation of cereal crops. In vitro Cell Dev Biol-Plant 41:187–200

    Article  CAS  Google Scholar 

  • Tawfik AA, Noga G (2002) Cumin regeneration from seedling-derived embryogenic callus in response to amended kinetin. Plant Cell Tiss Organ Cul 69:35–40

    Article  CAS  Google Scholar 

  • Tawfik AA, Mohamed MF (2006) In vitro cloning of two cumin landrace lines via shoot-tip culture. J Hortic Sci Biotech 81:264–268

    Google Scholar 

  • Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136

    Article  PubMed  CAS  Google Scholar 

  • Thomas JC, Guiltinan MJ, Bustos S, Thomas T, Nessler C (1989) Carrot (Daucus carota) hypocotyls transformation using Agrobacterium tumefacience. Plant Cell Rep 8:354–357

    Article  CAS  Google Scholar 

  • Thorpe TA (1994) Morphogenesis and regeneration. In: Vasil IK, Thorpe TA (eds) Plant cell and tissue culture. Kluwer Academic Publishers, Dordrecht, pp 17–36

    Google Scholar 

  • Veit B (2006) Stem cell signalling networks in plants. Plant Mol Biol 60:793–810

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Williams-Carrier R, Jackson D, Lemaux PG (1998) Expression of CDC2Zm and KNOTTED1 during in-vitro axillary shoot meristem proliferation and adventitious shoot meristem formation in maize (Zea mays L.) and barley (Hordeum vulgare L.). Planta 204:542–549

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Ervin EH (2004) Cytokinin-containing Seaweed and Humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci 44:1–10

    Google Scholar 

Download references

Acknowledgments

We would like to greatly thank Mr. Michael Seymour and Miss Tammana Saiyed (La Trobe university, Bundoora, Australia) for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Ebrahimie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebrahimie, E., Naghavi, M.R., Hosseinzadeh, A. et al. Induction and comparison of different in vitro morphogenesis pathways using embryo of cumin (Cuminum cyminum L.) as a model material. Plant Cell Tiss Organ Cult 90, 293–311 (2007). https://doi.org/10.1007/s11240-007-9269-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-007-9269-5

Keywords

Navigation