Skip to main content
Log in

Molecular approaches to trematode systematics: ‘best practice’ and implications for future study

  • Published:
Systematic Parasitology Aims and scope Submit manuscript

Abstract

To date, morphological analysis has been the cornerstone to trematode systematics. However, since the late-1980s we have seen an increased integration of genetic data to overcome problems encountered when morphological data are considered in isolation. Here, we provide advice regarding the ‘best molecular practice’ for trematode taxonomy and systematic studies, in an attempt to help unify the field and provide a solid foundation to underpin future work. Emphasis is placed on defining the study goals and recommendations are made regarding sample preservation, extraction methods, and the submission of molecular vouchers. We advocate generating sequence data from all parasite species/host species/geographic location combinations and stress the importance of selecting two independently evolving loci (one ribosomal and one mitochondrial marker). We recommend that loci should be chosen to provide genetic variation suitable to address the question at hand and for which sufficient ‘useful’ comparative sequence data already exist. Quality control of the molecular data via using proof-reading Taq polymerase, sequencing PCR amplicons using both forward and reverse primers, ensuring that a minimum of 85% overlap exists when constructing consensus sequences, and checking electropherograms by eye is stressed. We advise that all genetic results are best interpreted using a holistic biological approach, which considers morphology, host identity, collection locality, and ecology. Finally, we consider what advances next-generation sequencing holds for trematode taxonomy and systematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adlard, R. D., Barker, S. C., Blair, D., & Cribb, T. H. (1993). Comparison of the second internal transcribed spacer (ribosomal DNA) from populations and species of Fasciolidae (Digenea). International Journal for Parasitology, 23, 423–425.

    Article  CAS  PubMed  Google Scholar 

  • Agapow, P. M., Bininda-Emonds, O. R. P., Crandall, K. A., Gittleman, J. L., Mace, G. M., et al. (2004). The impact of species concept on biodiversity studies. The Quarterly Review of Biology, 79, 161–179.

    Article  PubMed  Google Scholar 

  • Astrin, J. J., Zhou, X., & Misof, B. (2013). The importance of biobanking in molecular taxonomy, with proposed definitions for vouchers in a molecular context. ZooKeys, 365, 67–70.

    Article  PubMed  Google Scholar 

  • Avise, J. C. (2000). Phylogeography: the history and formation of species. London: Harvard University Press, 464 pp.

  • Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., et al. (1987). Intraspecific phylogeography—The mitochondrial-DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489–522.

    Article  Google Scholar 

  • Blair, D., & McManus, D. P. (1989). Restriction enzyme mapping of ribosomal DNA can distinguish between fasciolid (liver fluke) species. Molecular and Biochemical Parasitology, 36, 201–208.

    Article  CAS  PubMed  Google Scholar 

  • Blasco-Costa, I., Faltýnková, A., Georgieva, S., Skirnisson, K., Scholz, T., & Kostadinova, A. (2014). Fish pathogens near the Arctic Circle: molecular, morphological and ecological evidence for unexpected diversity of Diplostomum (Digenea: diplostomidae) in Iceland. International Journal for Parasitology, 44, 703–715.

    Article  PubMed  Google Scholar 

  • Brabec, J., Kostadinova, A., Scholz, T., & Littlewood, D. T. J. (2015). Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens. Parasites & Vectors, 8, 336.

    Article  Google Scholar 

  • Bray, R. A., Littlewood, D. T. J., Herniou, E. A., Williams, B., & Henderson, R. E. (1999). Digenean parasites of deep-sea teleosts: a review and case studies of intrageneric phylogenies. Parasitology, 119, S125–S144.

    Article  PubMed  Google Scholar 

  • Bray, R. A., Waeschenbach, A., Cribb, T. H., Weedall, G. D., Dyal, P., & Littlewood, D. T. J. (2009). The phylogeny of the Lepocreadioidea (Platyhelminthes, Digenea) inferred from nuclear and mitochondrial genes: Implications for their systematics and evolution. Acta Parasitologica, 54, 310–329.

    Google Scholar 

  • Brooks, D. R., & Hoberg, E. P. (2001). Parasite systematics in the 21st century: opportunities and obstacles. Trends in Parasitology, 17, 273–275.

    Article  CAS  PubMed  Google Scholar 

  • Brown, W. M., George, M., & Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 76, 1967–1971.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calvignac, S., Konecny, L., Malard, F., & Douady, C. J. (2011). Preventing the pollution of mitochondrial datasets with nuclear mitochondrial paralogs (numts). Mitochondrion, 11, 246–254.

    Article  CAS  PubMed  Google Scholar 

  • Cribb, T. H., Adlard, R. D., Bray, R. A., Sasal, P., & Cutmore, S. C. (2014). Biogeography of tropical Indo-West Pacific parasites: a cryptic species of Transversotrema and evidence for rarity of Transversotrematidae (Trematoda) in French Polynesia. Parasitology International, 63, 285–294.

    Article  PubMed  Google Scholar 

  • Cribb, T. H., Adlard, R. D., Hayward, C. J., Bott, N. J., Ellis, D., et al. (2011). The life cycle of Cardicola forsteri (Trematoda: Aporocotylidae), a pathogen of ranched southern bluefin tuna, Thunnus maccoyi. International Journal for Parasitology, 41, 861–870.

    Article  PubMed  Google Scholar 

  • Cribb, T. H., & Bray, R. A. (2010). Gut wash, body soak, blender and heat-fixation: approaches to the effective collection, fixation and preservation of trematodes of fishes. Systematic Parasitology, 76, 1–7.

    Article  PubMed  Google Scholar 

  • Criscione, C. D., & Blouin, M. S. (2005). Effective sizes of macroparasite populations: A conceptual model. Trends in Parasitology, 21, 212–217.

    Article  PubMed  Google Scholar 

  • Criscione, C. D., Poulin, R., & Blouin, M. S. (2005). Molecular ecology of parasites: Elucidating ecological and microevolutionary processes. Molecular Ecology, 14, 2247–2257.

    Article  CAS  PubMed  Google Scholar 

  • Criscione, C. D., Vilas, R., Paniagua, E., & Blouin, M. S. (2011). More than meets the eye: detecting cryptic microgeographic population structure in a parasite with a complex life cycle. Molecular Ecology, 20, 2510–2524.

    Article  PubMed  Google Scholar 

  • Curran, S. S., Tkach, V. V., & Overstreet, R. M. (2013). A new species of Homalometron (Digenea: Apocreadiidae) from fishes in the northern gulf of Mexico. Journal of Parasitology, 99, 93–101.

    Article  PubMed  Google Scholar 

  • Cutmore, S. C., Miller, T. L., Bray, R. A., & Cribb, T. H. (2014). A new species of Plectognathotrema Layman, 1930 (Trematoda: Zoogonidae) from an Australian monacanthid, with a molecular assessment of the phylogenetic position of the genus. Systematic Parasitology, 89, 237–246.

    Article  PubMed  Google Scholar 

  • Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society, 85, 407–415.

    Article  Google Scholar 

  • De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56, 879–886.

    Article  PubMed  Google Scholar 

  • Detwiler, J. T., Bos, D. H., & Minchella, D. J. (2010). Revealing the secret lives of cryptic species: Examining the phylogenetic relationships of echinostome parasites in North America. Molecular Phylogenetics and Evolution, 55, 611–620.

    Article  PubMed  Google Scholar 

  • Diaz, P. E., Bray, R. A., Cutmore, S. C., Ward, S., & Cribb, T. H. (2015). A complex of species related to Paradiscogaster glebulae (Digenea: Faustulidae) in chaetodontid fishes (Teleostei: Perciformes) of the Great Barrier Reef. Parasitology International, 64, 421–428.

    Article  PubMed  Google Scholar 

  • Donoghue, M. J. (1985). A critique of the biological species concept and recommendations for a phylogenetic alternative. Bryologist, 88, 172–181.

    Article  Google Scholar 

  • Faltýnková, A., Georgieva, S., Kostadinova, A., Blasco-Costa, I., Scholz, T., & Skírnisson, K. (2014). Diplostomum von Nordmann, 1832 (Digenea: Diplostomidae) in the sub-Arctic: descriptions of the larval stages of six species discovered by morphological and molecular analyses. Systematic Parasitology, 89, 195–213.

    Article  PubMed  Google Scholar 

  • Faltýnková, A., Georgieva, S., Soldánová, M., & Kostadinova, A. (2015). A re-assessment of species diversity within the ‘revolutum’ group of Echinostoma Rudolphi, 1809 (Digenea: Echinostomatidae) in Europe. Systematic Parasitology, 90, 1–25.

    Article  PubMed  Google Scholar 

  • Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.

    CAS  PubMed  Google Scholar 

  • Georgieva, S., Faltýnková, A., Brown, R., Blasco-Costa, I., Soldánová, M., Sitko, J., Scholz, T., & Kostadinova, A. (2014). Echinostomarevolutum’ (Digenea: Echinostomatidae) species complex revisited: species delimitation based on novel molecular and morphological data gathered in Europe. Parasites & Vectors, 7, 520.

    Google Scholar 

  • Georgieva, S., Soldánová, M., Pérez-del-Olmo, A., Dangel, R. D., Sitko, J., Sures, B., & Kostadinova, A. (2013). Molecular prospecting for European Diplostomum (Digenea: Diplostomidae) reveals cryptic diversity. International Journal for Parasitology, 43, 57–72.

    Article  CAS  PubMed  Google Scholar 

  • Gerber, A. S., Loggins, R., Kumar, S., & Dowling, T. E. (2001). Does nonneutral evolution shape observed patterns of DNA variation in animal mitochondrial genomes? Annual Review of Genetics, 35, 539–566.

    Article  CAS  PubMed  Google Scholar 

  • Herrmann, K. K., Poulin, R., Keeney, D. B., & Blasco-Costa, I. (2014). Genetic structure in a progenetic trematode: signs of cryptic species with contrasting reproductive strategies. International Journal for Parasitology, 44, 811–818.

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand, J., Pulis, E. E., & Tkach, V. V. (2015). Redescription and phylogenetic relationships of the rare Lyperosomum sarothrurae Baer, 1959 (Digenea: Dicrocoeliidae). Acta Parasitologica, 60, 371–377.

    Article  PubMed  Google Scholar 

  • Hillis, D. M., & Davis, S. K. (1986). Evolution of ribosomal DNA: fifty million years of recorded history in the frog genus Rana. Evolution, 40, 1275–1288.

    Article  CAS  Google Scholar 

  • Hillis, D. M., & Dixon, M. T. (1991). Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology, 66, 411–453.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, J. A., Ingram, E., Adlard, R. D., Bray, R. A., & Cribb, T. H. (2010). A cryptic complex of Transversotrema species (Digenea: Transversotrematidae) on labroid, haemulid and lethrinid fishes in the Indo-West Pacific Region, including the description of three new species. Zootaxa, 2652, 17–32.

    Google Scholar 

  • Jannotti-Passos, L. K., Souza, C. P., Parra, J. C., & Simpson, A. J. G. (2001). Biparental mitochondrial DNA inheritance in the parasitic trematode Schistosoma mansoni. The Journal of Parasitology, 87, 79–82.

    Article  CAS  PubMed  Google Scholar 

  • Justine, J.-L., Briand, M. J., & Bray, R. A. (2012). A quick and simple method, usable in the field, for collecting parasites in suitable condition for both morphological and molecular studies. Parasitology Research, 111, 341–351.

    Article  PubMed  Google Scholar 

  • Kaukas, A., & Rollinson, D. (1997). Interspecific variation within the ‘hypervariable’ region of the 18S ribosomal RNA gene among species of Schistosoma Weinland, 1858 (Digenea). Systematic Parasitology, 36, 157–160.

    Article  Google Scholar 

  • Keeney, D. B., Waters, J. M., & Poulin, R. (2007). Diversity of trematode genetic clones within amphipods and the timing of same-clone infections. International Journal for Parasitology, 37, 351–357.

    Article  CAS  PubMed  Google Scholar 

  • Kingman, J. F. C. (1982a). The coalescent. Stochastic Processes and their Applications, 13, 235–248.

    Article  Google Scholar 

  • Kingman, J. F. C. (1982b). On the genealogy of large populations. Journal of Applied Probability, 19, 27–43.

    Article  Google Scholar 

  • Králová-Hromadová, I., Špakulová, M., Horáčková, E., Turčeková, L., Novobilský, A., et al. (2008). Sequence analysis of ribosomal and mitochondrial genes of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae): Intraspecific variation and differentiation from Fasciola hepatica. Journal of Parasitology, 94, 58–67.

    Article  PubMed  Google Scholar 

  • Le, T. H., Blair, D., & McManus, D. P. (2002). Mitochondrial genomes of parasitic flatworms. Trends in Parasitology, 18, 206–213.

    Article  CAS  PubMed  Google Scholar 

  • León-Regagnon, V., & Paredes, C. E. L. (2002). Haematoloechus danbrooksi n. sp. (Digenea: Plagiorchioidea) from Rana vaillanti from Los Tuxtlas, Veracruz. Mexico. Journal of Parasitology, 88, 1215–1221.

    Article  PubMed  Google Scholar 

  • Leung, T., Keeney, D., & Poulin, R. (2009). Cryptic species complexes in manipulative echinostomatid trematodes: when two become six. Parasitology, 136, 241–252.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Zhao, G. H., Zou, F. C., Mo, X. H., Yuan, Z. G., et al. (2010). Combined mitochondrial 16S and 12S rDNA sequences: an effective genetic marker for inter-species phylogenetic analysis of zoonotic trematodes. Parasitology Research, 107, 561–569.

    Article  CAS  PubMed  Google Scholar 

  • Liu, G.-H., Gasser, R., Young, N., Song, H.-Q., Ai, L., & Zhu, X.-Q. (2014). Complete mitochondrial genomes of the ‘intermediate form’ of Fasciola and Fasciola gigantica, and their comparison with F. hepatica. Parasites & Vectors, 7, 150.

  • Locke, S. A., McLaughlin, D. J., & Marcogliese, D. J. (2010). DNA barcodes show cryptic diversity and a potential physiological basis for host specificity among Diplostomoidea (Platyhelminthes: Digenea) parasitizing freshwater fishes in the St. Lawrence River. Canada. Molecular Ecology, 19, 2813–2827.

    Article  CAS  PubMed  Google Scholar 

  • Luton, K., Walker, D., & Blair, D. (1992). Comparisons of ribosomal internal transcribed spacers from two congeneric species of flukes (Platyhelminthes: Trematoda: Digenea). Molecular and Biochemical Parasitology, 56, 323–327.

    Article  CAS  PubMed  Google Scholar 

  • Mayden, R. L. (1997). A hierarchy of species concepts: The denouement in the saga of the species problem. In Claridge, M. F., Dawah, H. A., and Wilson, M. R. (Eds.) Species: The units of biodiversity. London: Chapman and Hall, pp. 381–424.

  • Mayr, E. (1942). Systematics and the origin of species. New York: Columbia University Press, 372 pp.

  • Miller, T. L., Adlard, R. D., Bray, R. A., Justine, J.-L., & Cribb, T. H. (2010). Cryptic species of Euryakaina n. g. (Digenea: Cryptogonimidae) from sympatric lutjanids in the Indo-West Pacific. Systematic Parasitology, 77, 185–204.

    Article  PubMed  Google Scholar 

  • Miura, O., Kuris, A. M., Torchin, M. E., Hechinger, R. F., Dunham, E. J., & Chiba, S. (2005). Molecular-genetic analyses reveal cryptic species of trematodes in the intertidal gastropod, Batillaria cumingi (Crosse). International Journal for Parasitology, 35, 793–801.

    Article  CAS  PubMed  Google Scholar 

  • Mone, H., Minguez, S., Ibikounle, M., Allienne, J. F., Massougbodji, A., & Mouahid, G. (2012). Natural interactions between S. haematobium and S. guineensis in the Republic of Benin. Scientific World Journal, 2012, 793420.

  • Morgan, J. A. T., & Blair, D. (1995). Nuclear rDNA ITS sequence variation in the trematode genus Echinostoma: An aid to establishing relationships within the 37-collar-spine group. Parasitology, 111, 609–615.

    Article  CAS  PubMed  Google Scholar 

  • Moszczynska, A., Locke, S. A., McLaughlin, J. D., Marcogliese, D. J., & Crease, T. J. (2009). Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Molecular Ecology Resources, 9, 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Nadler, S. A., & Pérez-Ponce de León, G. (2011). Integrating molecular and morphological approaches for characterizing parasite cryptic species: Implications for parasitology. Parasitology, 138, 1688–1709.

    Article  CAS  PubMed  Google Scholar 

  • Nolan, M. J., & Cribb, T. H. (2004). The life cycle of Paracardicoloides yamagutii Martin, 1974 (Digenea: Sanguinicolidae). Folia Parasitologica, 51, 320–326.

    Article  PubMed  Google Scholar 

  • Nolan, M. J., & Cribb, T. H. (2005). The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Advances in Parasitology, 60, 101–163.

    Article  PubMed  Google Scholar 

  • Nolan, M. J., & Cribb, T. H. (2006). An exceptionally rich complex of Sanguinicolidae von Graff, 1907 (Platyhelminthes: Trematoda) from Siganidae, Labridae and Mullidae (Teleostei: Perciformes) from the Indo-West Pacific Region. Zootaxa, 1218, 3–80.

    Google Scholar 

  • O’Dwyer, K., Blasco-Costa, I., Poulin, R., & Faltýnková, A. (2014). Four marine digenean parasites of Austrolittorina spp. (Gastropoda: Littorinidae) in New Zealand: morphological and molecular data. Systematic Parasitology, 89, 133–152.

    Article  PubMed  Google Scholar 

  • Olson, P. D., & Tkach, V. V. (2005). Advances and trends in the molecular systematics of the parasitic platyhelminthes. Advances in Parasitology, 60, 165–243.

    Article  PubMed  Google Scholar 

  • Pérez-Ponce de León, G., & Nadler, S. A. (2010). What we don’t recognize can hurt us: A plea for awareness about cryptic species. Journal of Parasitology, 96, 453–464.

    Article  Google Scholar 

  • Pérez-Ponce de León, G., Razo-Mendivil, U., Mendoza-Garfias, B., Rubio-Godoy, M., & Choudhury, A. (2015). A new species of Wallinia Pearse, 1920 (Digenea: Allocreadiidae) in Astyanax mexicanus (Characidae) from Mexico revealed by morphology and sequences of the 28S ribosomal RNA gene. Folia Parasitologica, 62, 018.

    Google Scholar 

  • Pleijel, F., Jondelius, U., Norlinder, E., Nygren, A., Oxelman, B., et al. (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution, 48, 369–371.

    Article  CAS  PubMed  Google Scholar 

  • Poulin, R. (2011). Uneven distribution of cryptic diversity among higher taxa of parasitic worms. Biology Letters, 7, 241–244.

    Article  PubMed Central  PubMed  Google Scholar 

  • Razo-Mendivil, U., Perez-Ponce de Leon, G., & Rubio-Godoy, M. (2013). Integrative taxonomy identifies a new species of Phyllodistomum (Digenea: Gorgoderidae) from the twospot livebearer, Heterandria bimaculata (Teleostei: Poeciliidae), in Central Veracruz, Mexico. Parasitology Research, 112, 4137–4150.

    Article  PubMed  Google Scholar 

  • Reusch, T. B. H., Rauch, G., & Kalbe, M. (2004). Polymorphic microsatellite loci for the trematode Diplostomum pseudospathaceum. Molecular Ecology Notes, 4, 577–579.

    Article  CAS  Google Scholar 

  • Richly, E., & Leister, D. (2004). NUMTs in sequenced eukaryotic genomes. Molecular Biology and Evolution, 21, 1081–1084.

    Article  CAS  PubMed  Google Scholar 

  • Robles-Pérez, D., García-García, P., Martínez-Pérez, J. M., Rojo-Vázquez, F. A., & Martínez-Valladares, M. (2015). Analysis of genetic variability of Fasciola hepatica populations from different geographical locations by ISSR-PCR. Parasitology, 142, 527–533.

    Article  PubMed  Google Scholar 

  • Rosen, D. E. (1979). Fishes from the uplands and intermontane basins of Guatemala: revisionary studies and comparative geography. Bulletin of the American Museum of Natural History, 162, 269–375.

    Google Scholar 

  • Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., et al. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook, J., & Russell, D. (2001). Molecular cloning: A laboratory manual. New York: Cold Springs Harbour Laboratory Press, 2028 pp.

  • Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74, 5463–5467.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Selbach, C., Soldánová, M., Georgieva, S., Kostadinova, A., Kalbe, M., & Sures, M. (2014). Morphological and molecular data for larval stages of four species of Petasiger 1909 (Digenea: Echinostomatidae) with an updated key to the known cercariae from the Palaearctic. Systematic Parasitology, 89, 153–166.

    Article  PubMed  Google Scholar 

  • Song, H., Buhay, J. E., Whiting, M. F., & Crandall, K. A. (2008). Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences of the United States of America, 105, 13486–13491.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tkach, V. V., & Pawlowski, J. (1999). A new method of DNA extraction from the ethanol-fixed parasitic worms. Acta Parasitologica, 44, 147–148.

    CAS  Google Scholar 

  • Valkiūnas, G., Atkinson, C. T., Bensch, S., Sehgal, R. N., & Ricklefs, R. E. (2008). Parasite misidentifications in GenBank: how to minimize their number? Trends in Parasitology, 24, 247–248.

    Article  PubMed  Google Scholar 

  • Van Steenkiste, N., Locke, S. A., Castelin, M., Marcogliese, D. J., & Abbott, C. L. (2015). New primers for DNA barcoding of digeneans and cestodes (Platyhelminthes). Molecular Ecology Resources, 15, 945–952.

    Article  PubMed  Google Scholar 

  • Will, K. W., Mishler, B. D., & Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology, 54, 844–851.

    Article  PubMed  Google Scholar 

  • Zarowlecki, M. Z., Huyse, T., & Littlewood, D. T. J. (2007). Making the most of mitochondrial genomes—Markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes : Digenea). International Journal for Parasitology, 37, 1401–1418.

    Article  Google Scholar 

  • Zhao, Q. P., Jiang, M. S., Dong, H. F., & Nie, P. (2012). Diversification of Schistosoma japonicum in mainland China revealed by mitochondrial DNA. PLoS Neglected Tropical Diseases, 6, e1503.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zikmundová, J., Georgieva, S., Faltýnková, A., Soldánová, M., & Kostadinova, A. (2014). Species diversity of Plagiorchis Lühe, 1899 (Digenea: Plagiorchiidae) in lymnaeid snails from freshwater ecosystems in central Europe revealed by molecules and morphology. Systematic Parasitology, 88, 37–54.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Associate Professor Thomas Cribb for organising the workshop ‘The biodiversity of trematodes of fishes’ at the 9th International Symposium on Fish Parasites and sharing his opinion on this topic. We are also grateful to two anonymous reviewers and the Editor-in-Chief for their very constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Blasco-Costa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Special Issue on Biodiversity of Trematodes of Fishes, Guest Edited by Thomas H. Cribb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blasco-Costa, I., Cutmore, S.C., Miller, T.L. et al. Molecular approaches to trematode systematics: ‘best practice’ and implications for future study. Syst Parasitol 93, 295–306 (2016). https://doi.org/10.1007/s11230-016-9631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11230-016-9631-2

Keywords

Navigation