Skip to main content
Log in

Intermolecular steric hindrance in 7-acylamino-[1H]-2-oxo-1,8-naphthyridines: NMR, ESI-MS, IR, and DFT calculation studies

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Intermolecular interactions of 7-(RCONH)-[1H]-2-oxo-1,8-naphthyridines (R = Me, Et, i-Pr, t-Bu, 1-adamantyl (1-Ad), CF3, and C2F5) containing ADAD quadruple hydrogen bonding motif were studied by liquid and solid state NMR, ESI-MS, IR, and DFT calculations. 1H NMR was used to determine the dimerization constants of i-Pr and 1-Ad congeners in CDCl3. 13C and 15N cross-polarization (CP) magic angle spinning (MAS) NMR data suggest that compounds possess similar solid state structures. Further, mass spectral data reveal that in gas phase both Me and 1-Ad derivatives form also multimers due to lack of competitive solvent interactions. The structures of the gas phase multimers depend on the size of the alkyl group. These results are in agreement with quantum chemical calculations. Geometry optimization and 1H NMR spectra show that in dimers that carry bulky alkyl groups (t-Bu and 1-Ad) certain hydrogen bonds are weaker than in Me, Et, and i-Pr derivatives while strong electron acceptors, CF3 and C2F5, deshields hydrogen bonded protons but creates significant electronic F/O repulsion yielding lowering of the energy of interaction. The influence of steric effect on dimerization of quadruply hydrogen bonded dimers was correlated with the Taft E s values.

Graphical abstract

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2

Similar content being viewed by others

References

  1. Prins LJ, Reinhoudt DN, Timmerman P (2001) Angew Chem Int Ed 40:2382

    Article  CAS  Google Scholar 

  2. Jeffrey GA (1997) In: An introduction to hydrogen bonding. Oxford University Press, Oxford

  3. De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW (2009) Chem Rev 109:5687

    Article  Google Scholar 

  4. de Greef TFA, Meijer EW (2008) Nature 453:171

    Article  Google Scholar 

  5. Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Chem Rev 101:4071

    Article  CAS  Google Scholar 

  6. Park T, Zimmerman SC (2006) J Am Chem Soc 128:11582

    Article  CAS  Google Scholar 

  7. Djurdjevic S, Leigh DA, McNab H, Parsons S, Teobaldi G, Zerbetto F (2007) J Am Chem Soc 129:476

    Article  CAS  Google Scholar 

  8. Mayer MF, Nakashima S, Zimmerman SC (2005) Org Lett 7:3005

    Article  CAS  Google Scholar 

  9. Park T, Zimmerman SC, Nakashima S (2005) J Am Chem Soc 127:6520

    Article  CAS  Google Scholar 

  10. Park T, Zimmerman SC (2006) J Am Chem Soc 128:13986

    Article  CAS  Google Scholar 

  11. Park T, Zimmerman SC (2006) J Am Chem Soc 128:14236

    Article  CAS  Google Scholar 

  12. Ong HC, Zimmerman SC (2006) Org Lett 8:1589

    Article  CAS  Google Scholar 

  13. Park T, Todd EM, Nakashima S, Zimmerman SC (2005) J Am Chem Soc 127:18133

    Article  CAS  Google Scholar 

  14. Corbin PS, Zimmerman SC (1998) J Am Chem Soc 120:9710

    Article  CAS  Google Scholar 

  15. Kuykendall DW, Anderson CA, Zimmerman SC (2009) Org Lett 11:61

    Article  CAS  Google Scholar 

  16. Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Hirschberg JHKK, Lange RFM, Lowe JKL, Meijer EW (1997) Science 278:1601

    Article  CAS  Google Scholar 

  17. Pranata J, Wierschke SG, Jorgensen WL (1991) J Am Chem Soc 113:2810

    Article  CAS  Google Scholar 

  18. Jorgensen WL, Pranata J (1990) J Am Chem Soc 112:2008

    Article  CAS  Google Scholar 

  19. Goswami S, Dey S, Gallagher JF, Lough AJ, García-Granda S, Torre-Fernández L, Alkorta I, Elguero J (2007) J Mol Struct 846:97

    Article  CAS  Google Scholar 

  20. Kushner AM, Vossler JD, Williams GA, Guan Z (2009) J Am Chem Soc 131:8766

    Article  CAS  Google Scholar 

  21. Dohno C, Yamamoto T, Nakatani K (2009) Eur J Org Chem 2009:4051

    Article  Google Scholar 

  22. Lüning U, Kühl C (1998) Tetrahedron Lett 39:5735

    Article  Google Scholar 

  23. Lehn J-M (2000) In: Supramolecular polymer chemistry—scope and perspectives. Marcel Dekker, New York

  24. Lehn J-M (1995) In: Supramolecular chemistry: concepts and perspectives. VCH, Weinheim

  25. Lüning U, Kühl C, Uphoff A (2002) Eur J Org Chem 2002:4063

    Article  Google Scholar 

  26. Schneider H-J (2009) Angew Chem Int Ed 48:3924

    Article  CAS  Google Scholar 

  27. Ośmiałowski B, Kolehmainen E, Dobosz R, Gawinecki R, Kauppinen R, Valkonen A, Koivukorpi J, Rissanen K (2010) J Phys Chem A 114:10421

    Article  Google Scholar 

  28. Sontjens SHM, Sijbesma RP, van Genderen MHP, Meijer EW (2000) J Am Chem Soc 122:7487

    Article  Google Scholar 

  29. de Greef TFA, Ligthart GBWL, Lutz M, Spek AL, Meijer EW, Sijbesma RP (2008) J Am Chem Soc 130:5479

    Article  Google Scholar 

  30. de Greef TFA, Nieuwenhuizen MML, Sijbesma RP, Meijer EW (2010) J Org Chem 75:598

    Article  Google Scholar 

  31. Sherrington DC, Taskinen KA (2001) Chem Soc Rev 30:83

    Article  CAS  Google Scholar 

  32. Osmialowski B (2009) J Mol Struct Theochem 908:92

    Article  CAS  Google Scholar 

  33. Sijbesma RP, Meijer EW (2003) Chem Commun 5

  34. Leung M-K, Mandal AB, Wang C-C, Lee G-H, Peng S-M, Cheng H-L, Her G-R, Chao I, Lu H-F, Sun Y-C, Shiao M-Y, Chou P-T (2002) J Am Chem Soc 124:4287

    Article  CAS  Google Scholar 

  35. Corbin PS, Zimmerman SC (2000) J Am Chem Soc 122:3779

    Article  CAS  Google Scholar 

  36. Corbin PS, Zimmerman SC, Thiessen PA, Hawryluk NA, Murray TJ (2001) J Am Chem Soc 123:10475

    Article  CAS  Google Scholar 

  37. Guo D, Sijbesma RP, Zuilhof H (2004) Org Lett 6:3667

    Article  CAS  Google Scholar 

  38. Brammer S, Lüning U, Kühl C (2002) Eur J Org Chem 2002:4054

    Article  Google Scholar 

  39. Ligthart GBWL, Ohkawa H, Sijbesma RP, Meijer EW (2005) J Am Chem Soc 127:810

    Article  CAS  Google Scholar 

  40. Ohkawa H, Ligthart GBWL, Sijbesma RP, Meijer EW (2007) Macromolecules 40:1453

    Article  CAS  Google Scholar 

  41. Hirama Y, Minakawa N, Matsuda A (2011) Bioorg Med Chem 19:352

    Article  CAS  Google Scholar 

  42. Alvares-Rua C, Garcia-Granda S, Goswami S, Mukherjee R, Dey S, Claramunt RM, Santa Maria MD, Rozas I, Jagerovic N, Alkorta I, Elguero J (2004) New J Chem 28:700

    Article  Google Scholar 

  43. Ligthart GBWL, Ohkawa H, Sijbesma RP, Meijer EW (2006) J Org Chem 71:375

    Article  CAS  Google Scholar 

  44. de Greef TFA, Ercolani G, Ligthart GBWL, Meijer EW, Sijbesma RP (2008) J Am Chem Soc 130:13755

    Article  Google Scholar 

  45. Bailey AJ, Horton PN, Grossel MC (2010) CrystEngComm 12:4074

    Article  CAS  Google Scholar 

  46. Witanowski M, Stefaniak L, Webb GA (1981) Annu Rep NMR Spectrosc 11b:1

    Google Scholar 

  47. Lopez C, Claramunt RM, Alkorta I, Elguero J (2000) Spectroscopy 14:121

    CAS  Google Scholar 

  48. Chen J-S, Rosenberger F (1990) Tetrahedron Lett 31:3975

    Article  CAS  Google Scholar 

  49. Krackov MH, Lee CM, Mautner HG (1965) J Am Chem Soc 87:892

    Article  CAS  Google Scholar 

  50. Wallen SL, Palmer BJ, Garrett BC, Yonker CR (1996) J Phys Chem 100:3959

    Article  CAS  Google Scholar 

  51. Anslyn EV, Dougherty DA (2006) In: Modern physical organic chemistry. University Science Books, Sausalito

  52. Ośmiałowski B, Kolehmainen E, Gawinecki R, Kauppinen R, Koivukorpi J, Valkonen A (2010) Struct Chem 21:1061

    Article  Google Scholar 

  53. de Koning LJ, Nibbering NMM, van Orden SL, Laukien FH (1997) Int J Mass Spectrom Ion Process 165–166:209

    Article  Google Scholar 

  54. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  55. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian Inc., Pittsburgh, PA

    Google Scholar 

  56. Osmialowski B, Kolehmainen E, Sievanen E, Kauppinen R, Behera B (2009) J Mol Struct 931:60

    Article  CAS  Google Scholar 

  57. Zhao Y, Schultz NE, Truhlar DG (2005) J Chem Phys 123:161103

    Article  Google Scholar 

  58. Zhao Y, Truhlar DG (2008) J Chem Theory Comput 4:1849

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Academy of Finland (Elina S. project no. 119616 and Elina K. no. 127941) and the Polish Ministry of Science and Higher Education (B.O. grant no. N N204 174138). The authors are very much indebted to the Academic Computer Centre in Gdansk–TASK and CYFRONET in Cracow for providing computer time and programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borys Ośmiałowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11224_2011_9808_MOESM1_ESM.doc

The file contains NMR spectra, coordinates of optimized structures, IR spectra, MS spectra, NMR and MS processing parameters and dilution experiment curves. (DOC 9907 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ośmiałowski, B., Kolehmainen, E., Kalenius, E. et al. Intermolecular steric hindrance in 7-acylamino-[1H]-2-oxo-1,8-naphthyridines: NMR, ESI-MS, IR, and DFT calculation studies. Struct Chem 22, 1143–1151 (2011). https://doi.org/10.1007/s11224-011-9808-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9808-x

Keywords

Navigation