Skip to main content
Log in

Solar Cycle Indices from the Photosphere to the Corona: Measurements and Underlying Physics

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

A variety of indices have been proposed in order to represent the many different observables modulated by the solar cycle. Most of these indices are highly correlated with each other owing to their intrinsic link with the solar magnetism and the dominant eleven year cycle, but their variations may differ in fine details, as well as on short- and long-term trends. In this paper we present an overview of the indices that are often employed to describe the many features of the solar cycle, moving from the ones referring to direct observations of the inner solar atmosphere, the photosphere and chromosphere, to those deriving from measurements of the transition region and solar corona. For each index, we summarize existing measurements and typical use, and for those that quantify physical observables, we describe the underlying physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Faculae is the name given to brightenings seen in photospheric radiation mainly near the solar limb and in the general vicinity of sunspots. Find more information in e.g. Solanki and Krivova (2009).

  2. The term white-light indicates the sum of all visible wavelengths of solar radiation from 400 to 700 nm, so that all colors are blended to appear white to the eye.

  3. http://www.ngdc.noaa.gov/stp/solar/ssndata.html.

  4. http://www.sidc.be/silso.

  5. http://www.sidc.be/silso/datafiles.

  6. http://www.ngdc.noaa.gov/stp/solar/ssndata.html.

  7. http://fenyi.solarobs.unideb.hu/DPD/index.html.

  8. http://www.ngdc.noaa.gov/stp/solar/sunspotregionsdata.html.

  9. http://www.ngdc.noaa.gov/stp/solar/sunspotregionsdata.html.

  10. http://obs.astro.ucla.edu/intro.html.

  11. http://diglib.nso.edu/ftp.html.

  12. http://solis.nso.edu/0/index.html.

  13. http://wso.stanford.edu.

  14. http://gong.nso.edu.

  15. http://soi.stanford.edu/data/.

  16. http://jsoc.stanford.edu.

  17. http://www.gao.spb.ru/database/mfbase/main_e.html.

  18. http://wso.stanford.edu.

  19. http://farside.nso.edu.

  20. http://stereo-ssc.nascom.nasa.gov/beacon/beacon_farside.shtml.

  21. http://www.ngdc.noaa.gov/stp/solar/wfaculae.html.

  22. http://solarwww.mtk.nao.ac.jp/solar/faculae/.

  23. http://158.250.29.123:8000/web/P_fac/.

  24. ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_UV/NOAAMgII.dat.

  25. http://bass2000.obspm.fr/.

  26. http://www.astro.ucla.edu/~ulrich/MW_SPADP.

  27. http://www.oa-roma.inaf.it/solare/index.html.

  28. http://old.solarstation.ru/.

  29. http://www.oaroma.inaf.it/solare/index.html.

  30. http://www.csun.edu/SanFernandoObservatory/.

  31. http://cesar.kso.ac.at.

  32. Plage is the name given to the brightening seen in chromospheric radiation corresponding to photospheric faculae. In contrast to faculae, plage are seen over the whole disk, in active regions and in the quiet sun, on the network pattern formed at the borders of supergranular cells. Find more information in e.g. Solanki and Krivova (2009).

  33. http://solis.nso.edu/iss.

  34. http://nsosp.nso.edu/cak_mon/.

  35. http://bass2000.obspm.fr/home.php.

  36. http://www.oact.inaf.it.

  37. http://cesar.kso.ac.at/synoptic/ha4m_years.php.

  38. http://www.bbso.njit.edu/Research/FDHA/.

  39. http://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/prominences-filaments/filaments/.

  40. Flare is the name given to a sudden, rapid, and intense brightening observed over the solar disk or at the solar limb, due to a release of magnetic energy (up to 1032 erg on the timescale of hours), followed by ejection of solar plasma through the corona into the heliosphere. Find more information e.g. in Benz (2008).

  41. http://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-flares/h-alpha/reports/.

  42. http://www.ngdc.noaa.gov/stp/solar/solarflares.html.

  43. http://www.koeri.boun.edu.tr/astronomy/fi_nedir.htm.

  44. Coronal holes are areas where the Sun’s corona is darker, and colder, and has lower-density plasma than average. They are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. Find more information in e.g. Potgieter (2013).

  45. http://www.ngdc.noaa.gov.

  46. http://www.spaceweather.gc.ca/solarflux/sx-5-eng.php.

  47. http://www.ngdc.noaa.gov/stp/space_weather/solar_data/solar_features/solar_radio/noontime_flux/.

  48. http://solar.nro.nao.ac.jp/norp/.

  49. http://www.gao.spb.ru/english/database/sd/tables.htm.

  50. http://secchirh.obspm.fr/nrh_data.php.

  51. http://realtime.obs-nancay.fr/dam/data_dam_affiche/.

  52. http://solarwww.mtk.nao.ac.jp/en/db_gline1.html.

  53. http://www.ngdc.noaa.gov/stp.

  54. http://www.suh.sk.

  55. Conversion: 1×1016 W sr−1=4.5×10−7 W m−2=1.2×photons cm−2s−1.

References

  • J.G. Anet, E.V. Rozanov, S. Muthers, T. Peter, S. BröNnimann, F. Arfeuille, J. Beer, A.I. Shapiro, C.C. Raible, F. Steinhilber, W.K. Schmutz, Impact of a potential 21st century “grand solar minimum” on surface temperatures and stratospheric ozone. Geophys. Res. Lett. 40, 4420–4425 (2013). doi:10.1002/grl.50806

    ADS  Google Scholar 

  • R. Arlt, R. Leussu, N. Giese, K. Mursula, I.G. Usoskin, Sunspot positions and sizes for 1825–1867 from the observations by Samuel Heinrich Schwabe. Mon. Not. R. Astron. Soc. 433, 3165–3172 (2013). doi:10.1093/mnras/stt961

    ADS  Google Scholar 

  • R. Arlt, N. Weiss, Solar activity in the past and the chaotic behaviour of the dynamo. Space Sci. Rev., 1–9 (2014). doi:10.1007/s11214-014-0063-5

  • E.H. Avrett, J.M. Fontenla, R. Loeser, Formation of the solar 10830 A line 1994, pp. 35–47

  • H.D. Babcock, The Sun’s polar magnetic field. Astrophys. J. 130, 364 (1959). doi:10.1086/146726

    ADS  Google Scholar 

  • H.D. Babcock, H.W. Babcock, Some new features of the solar spectrum. Publ. Astron. Soc. Pac. 46, 132 (1934). doi:10.1086/124428

    ADS  Google Scholar 

  • L.A. Balmaceda, S.K. Solanki, N.A. Krivova, S. Foster, A homogeneous database of sunspot areas covering more than 130 years. J. Geophys. Res. 114, 7104 (2009). doi:10.1029/2009JA014299

    Google Scholar 

  • T. Baranyi, S. Király, H.E. Coffey, Indirect comparison of Debrecen and Greenwich daily sums of sunspot areas. Mon. Not. R. Astron. Soc. 434, 1713–1720 (2013). doi:10.1093/mnras/stt1134

    ADS  Google Scholar 

  • T. Baranyi, L. Gyori, A. Ludmány, H.E. Coffey, Comparison of sunspot area data bases. Mon. Not. R. Astron. Soc. 323, 223–230 (2001). doi:10.1046/j.1365-8711.2001.04195.x

    ADS  Google Scholar 

  • J. Beer, A. Blinov, G. Bonani, H.J. Hofmann, R.C. Finkel, Use of Be-10 in polar ice to trace the 11-year cycle of solar activity. Nature 347, 164–166 (1990). doi:10.1038/347164a0

    ADS  Google Scholar 

  • A.O. Benz, Flare observations. Living Rev. Sol. Phys. 5, 1 (2008). doi:10.12942/lrsp-2008-1

    ADS  Google Scholar 

  • L. Bertello, R.K. Ulrich, J.E. Boyden, The Mount Wilson Ca ii K plage index time series. Sol. Phys. 264, 31–44 (2010). doi:10.1007/s11207-010-9570-z

    ADS  Google Scholar 

  • R. Brajša, S. Pohjolainen, V. Ruždjak, T. Sakurai, S. Urpo, B. Vršnak, H. Wöhl, Helium 10830 Å measurements of the Sun. Sol. Phys. 163, 79–91 (1996). doi:10.1007/BF00165457

    ADS  Google Scholar 

  • D.C. Braun, C. Lindsey, Y. Fan, S.M. Jefferies, Local acoustic diagnostics of the solar interior. Astrophys. J. 392, 739–745 (1992). doi:10.1086/171477

    ADS  Google Scholar 

  • B. Caccin, I. Ermolli, M. Fofi, A.M. Sambuco, Variations of the chromospheric network with the solar cycle. Sol. Phys. 177, 295–303 (1998). doi:10.1023/A:1004938412420

    ADS  Google Scholar 

  • W.J. Chaplin, S. Basu, Sounding stellar cycles. Space Sci. Rev. (2014)

  • G.A. Chapman, J.J. Dobias, T. Arias, Facular and sunspot areas during solar cycles 22 and 23. Astrophys. J. 728, 150 (2011). doi:10.1088/0004-637X/728/2/150

    ADS  Google Scholar 

  • P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7, 3 (2010). doi:10.12942/lrsp-2010-3

    ADS  Google Scholar 

  • P. Charbonneau, A. Choudhury, J. Jang, B. Karak, M. Miesch, Challenges for the solar dynamo. Space Sci. Rev. (2014)

  • F. Clette, E. Cliver, L. Svalgaard, The sunspot number in time. Space Sci. Rev. (2014)

  • F. Clette, D. Berghmans, P. Vanlommel, R.A.M. Van der Linden, A. Koeckelenbergh, L. Wauters, From the Wolf number to the international sunspot index: 25 years of SIDC. Adv. Space Res. 40, 919–928 (2007). doi:10.1016/j.asr.2006.12.045

    ADS  Google Scholar 

  • A.E. Covington, Solar radio emission at 10.7 cm, 1947–1968. J. R. Astron. Soc. Can. 63, 125 (1969)

    ADS  Google Scholar 

  • S.R. Cranmer, Coronal holes. Living Rev. Sol. Phys. 6(3) (2009). doi:10.12942/lrsp-2009-3

  • S. Criscuoli, P. Romano, F. Giorgi, F. Zuccarello, Magnetic evolution of superactive regions. Complexity and potentially unstable magnetic discontinuities. Astron. Astrophys. 506, 1429–1436 (2009). doi:10.1051/0004-6361/200912044

    ADS  Google Scholar 

  • L. Deng, Z. Qi, G. Dun, C. Xu, Phase relationship between polar faculae and sunspot numbers revisited: wavelet transform analyses. Publ. Astron. Soc. Jpn. 65, 11 (2013). doi:10.1093/pasj/65.1.11

    ADS  Google Scholar 

  • J.F. Denisse, Microwave solar noise and sunspot. Astron. J. 54, 183 (1949). doi:10.1086/106280

    ADS  Google Scholar 

  • V. Domingo, I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, N. Krivova, G. Kopp, W. Schmutz, S.K. Solanki, H.C. Spruit, Y. Unruh, A. Vögler, Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev. 145, 337–380 (2009). doi:10.1007/s11214-009-9562-1

    ADS  Google Scholar 

  • I. Dorotovič, M. Minarovjech, M. Lorenc, M. Rybanský, Modified homogeneous data set of coronal intensities. Sol. Phys. 289, 2697–2703 (2014). doi:10.1007/s11207-014-0501-2

    ADS  Google Scholar 

  • T. Dudok de Wit, S. Bruinsma, K. Shibasaki, Synoptic radio observations as proxies for upper atmosphere modelling. J. Space Weather Space Clim. 4(26), 260000 (2014). doi:10.1051/swsc/2014003

    Google Scholar 

  • T. Dudok de Wit, M. Kretzschmar, J. Lilensten, T. Woods, Finding the best proxies for the solar UV irradiance. Geophys. Res. Lett. 36, 10107 (2009). doi:10.1029/2009GL037825

    ADS  Google Scholar 

  • I. Ermolli, S.K. Solanki, A.G. Tlatov, N.A. Krivova, R.K. Ulrich, J. Singh, Comparison among Ca II K spectroheliogram time series with an application to solar activity studies. Astrophys. J. 698, 1000–1009 (2009a). doi:10.1088/0004-637X/698/2/1000

    ADS  Google Scholar 

  • I. Ermolli, E. Marchei, M. Centrone, S. Criscuoli, F. Giorgi, C. Perna, The digitized archive of the Arcetri spectroheliograms. Preliminary results from the analysis of Ca II K images. Astron. Astrophys. 499, 627–632 (2009b). doi:10.1051/0004-6361/200811406

    ADS  Google Scholar 

  • I. Ermolli, S. Criscuoli, H. Uitenbroek, F. Giorgi, M.P. Rast, S.K. Solanki, Radiative emission of solar features in the Ca II K line: comparison of measurements and models. Astron. Astrophys. 523, 55 (2010). doi:10.1051/0004-6361/201014762

    ADS  Google Scholar 

  • I. Ermolli, K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, M. Weber, Y.C. Unruh, L. Gray, U. Langematz, P. Pilewskie, E. Rozanov, W. Schmutz, A. Shapiro, S.K. Solanki, T.N. Woods, Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. 13, 3945–3977 (2013). doi:10.5194/acp-13-3945-2013

    ADS  Google Scholar 

  • I. Ermolli, F. Giorgi, P. Romano, F. Zuccarello, S. Criscuoli, M. Stangalini, Fractal and multifractal properties of active regions as flare precursors: a case study based on SOHO/MDI and SDO/HMI observations. Sol. Phys. 289, 2525–2545 (2014). doi:10.1007/s11207-014-0500-3

    ADS  Google Scholar 

  • Y.P. Fedorenko, O.F. Tyrnov, V.N. Fedorenko, V.L. Dorohov, Model of traveling ionospheric disturbances. J. Space Weather Space Clim. 3(26), 30 (2013). doi:10.1051/swsc/2013052

    ADS  Google Scholar 

  • P. Foukal, L. Bertello, W.C. Livingston, A.A. Pevtsov, J. Singh, A.G. Tlatov, R.K. Ulrich, A century of solar Ca ii measurements and their implication for solar UV driving of climate. Sol. Phys. 255, 229–238 (2009). doi:10.1007/s11207-009-9330-0

    ADS  Google Scholar 

  • C. Fröhlich, Total solar irradiance: what have we learned from the last three cycles and the recent minimum? Space Sci. Rev. 176, 237–252 (2013). doi:10.1007/s11214-011-9780-1

    ADS  Google Scholar 

  • G. Galilei, Istoria e Dimostrazioni Intorno Alle Macchie Solari (Accad. Naz. Lincei, Rome, 1613)

    Google Scholar 

  • M.K. Georgoulis, Toward an efficient prediction of solar flares: which parameters, and how? Entropy 15, 5022–5052 (2013). doi:10.3390/e15115022

    ADS  Google Scholar 

  • I. González Hernández, F. Hill, C. Lindsey, Calibration of seismic signatures of active regions on the far side of the Sun. Astrophys. J. 669, 1382–1389 (2007). doi:10.1086/521592

    ADS  Google Scholar 

  • I. González Hernández, M. Díaz Alfaro, K. Jain, W.K. Tobiska, D.C. Braun, F. Hill, F. Pérez Hernández, A full-Sun magnetic index from helioseismology inferences. Sol. Phys. 289, 503–514 (2014)

    ADS  Google Scholar 

  • G.E. Hale, On the probable existence of a magnetic field in Sun-spots. Astrophys. J. 28, 315 (1908). doi:10.1086/141602

    ADS  Google Scholar 

  • G.E. Hale, Sun-spots as magnets and the periodic reversal of their polarity. Nature 113, 105–112 (1924). doi:10.1038/113105a0

    ADS  Google Scholar 

  • G.E. Hale, S.B. Nicholson, The law of Sun-spot polarity. Astrophys. J. 62, 270 (1925). doi:10.1086/142933

    ADS  Google Scholar 

  • G.E. Hale, F. Ellerman, S.B. Nicholson, A.H. Joy, The magnetic polarity of Sun-spots. Astrophys. J. 49, 153 (1919). doi:10.1086/142452

    ADS  Google Scholar 

  • J.C. Hall, Stellar chromospheric activity. Living Rev. Sol. Phys. 5, 2 (2008). doi:10.12942/lrsp-2008-2

    ADS  Google Scholar 

  • J.W. Harvey, N.R. Sheeley Jr., A comparison of He II 304 A and He I 10,830 A spectroheliograms. Sol. Phys. 54, 343–351 (1977). doi:10.1007/BF00159924

    ADS  Google Scholar 

  • K.L. Harvey, The relationship between coronal bright points as seen in He I Lambda 10830 and the evolution of the photospheric network magnetic fields. Aust. J. Phys. 38, 875–883 (1985)

    ADS  Google Scholar 

  • K.L. Harvey, The cyclic behavior of solar activity, in The Solar Cycle, ed. by K.L. Harvey Astronomical Society of the Pacific Conference Series, vol. 27, 1992, p. 335

    Google Scholar 

  • K.L. Harvey, F. Recely, Polar coronal holes during cycles 22 and 23. Sol. Phys. 211, 31–52 (2002). doi:10.1023/A:1022469023581

    ADS  Google Scholar 

  • D.H. Hathaway, The solar cycle. Living Rev. Sol. Phys. 7, 1 (2010). doi:10.12942/lrsp-2010-1

    ADS  Google Scholar 

  • D.H. Hathaway, R.M. Wilson, What the sunspot record tells us about space climate. Sol. Phys. 224, 5–19 (2004). doi:10.1007/s11207-005-3996-8

    ADS  Google Scholar 

  • D.F. Heath, B.M. Schlesinger, The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res. 91, 8672–8682 (1986). doi:10.1029/JD091iD08p08672

    ADS  Google Scholar 

  • C.J. Henney, W.A. Toussaint, S.M. White, C.N. Arge, Forecasting F10.7 with solar magnetic flux transport modeling. Space Weather 10, 2011 (2012). doi:10.1029/2011SW000748

    ADS  Google Scholar 

  • D.V. Hoyt, K.H. Schatten, How well was the Sun observed during the maunder minimum? Sol. Phys. 165, 181–192 (1996). doi:10.1007/BF00149097

    ADS  Google Scholar 

  • D.V. Hoyt, K.H. Schatten, Group sunspot numbers: a new solar activity reconstruction. Sol. Phys. 179, 189–219 (1998a). doi:10.1023/A:1005007527816

    ADS  Google Scholar 

  • D.V. Hoyt, K.H. Schatten, Group sunspot numbers: a new solar activity reconstruction. Sol. Phys. 181, 491–512 (1998b). doi:10.1023/A:1005056326158

    ADS  Google Scholar 

  • H. Hudson, L. Fletcher, J. McTiernan, Cycle 23 variation in solar flare productivity. Sol. Phys. 289, 1341–1347 (2014a). doi:10.1007/s11207-013-0384-7

    ADS  Google Scholar 

  • H. Hudson, L. Svalgaard, E. Cliver, Solar sector structure. Space Sci. Rev. (2014b)

  • H.S. Hudson, S. Silva, M. Woodard, R.C. Willson, The effects of sunspots on solar irradiance. Sol. Phys. 76, 211–219 (1982). doi:10.1007/BF00170984

    ADS  Google Scholar 

  • K. Jain, S.S. Hasan, Modulation in the solar irradiance due to surface magnetism during cycles 21, 22 and 23. Astron. Astrophys. 425, 301–307 (2004). doi:10.1051/0004-6361:20047102

    ADS  Google Scholar 

  • J. Jiang, R.H. Cameron, D. Schmitt, M. Schüssler, The solar magnetic field since 1700. II. Physical reconstruction of total, polar and open flux. Astron. Astrophys. 528, 83 (2011). doi:10.1051/0004-6361/201016168

    ADS  Google Scholar 

  • A. Kerdraon, J.-M. Delouis, The Nançay radioheliograph, in Coronal Physics from Radio and Space Observations, ed. by G. Trottet Lecture Notes in Physics, Berlin Springer Verlag, vol. 483, 1997, p. 192. doi:10.1007/BFb0106458

    Google Scholar 

  • C. Kiess, R. Rezaei, W. Schmidt, Properties of sunspot umbrae observed in Cycle 24. ArXiv e-prints (2014)

  • J. Kleczek, Ionospheric disturbances and flares in the 11-years cycle. Bull. Astron. Inst. Czechoslov. 3, 52 (1952)

    ADS  Google Scholar 

  • N.A. Krivova, L.E.A. Vieira, S.K. Solanki, Reconstruction of solar spectral irradiance since the Maunder minimum. J. Geophys. Res. 115, 12112 (2010). doi:10.1029/2010JA015431

    Google Scholar 

  • M.R. Kundu, Solar active regions at millimeter wavelengths. Sol. Phys. 13, 348–356 (1970). doi:10.1007/BF00153556

    ADS  Google Scholar 

  • I. Kutiev, I. Tsagouri, L. Perrone, D. Pancheva, P. Mukhtarov, A. Mikhailov, J. Lastovicka, N. Jakowski, D. Buresova, E. Blanch, B. Andonov, D. Altadill, S. Magdaleno, M. Parisi, J. Miquel Torta, Solar activity impact on the Earth’s upper atmosphere. J. Space Weather Space Clim. 3(26), 6 (2013). doi:10.1051/swsc/2013028

    Google Scholar 

  • A. Lagg, Recent advances in measuring chromospheric magnetic fields in the He I 10830 Å line. Adv. Space Res. 39, 1734–1740 (2007). doi:10.1016/j.asr.2007.03.091

    ADS  Google Scholar 

  • J.L. Lean, T.N. Woods, F.G. Eparvier, R.R. Meier, D.J. Strickland, J.T. Correira, J.S. Evans, Solar extreme ultraviolet irradiance: present, past, and future. J. Geophys. Res. 116, 1102 (2011). doi:10.1029/2010JA015901

    Google Scholar 

  • J. Leenaarts, M. Carlsson, L. Rouppe van der Voort, The formation of the Hα line in the Solar chromosphere. Astrophys. J. 749, 136 (2012). doi:10.1088/0004-637X/749/2/136

    ADS  Google Scholar 

  • J. Leenaarts, T.M.D. Pereira, M. Carlsson, H. Uitenbroek, B. De Pontieu, The formation of IRIS diagnostics. II. The formation of the Mg II h&k lines in the solar atmosphere. Astrophys. J. 772, 90 (2013). doi:10.1088/0004-637X/772/2/90

    ADS  Google Scholar 

  • L. Lefevre, F. Clette, Survey and merging of sunspot catalogs. Sol. Phys. 289, 545–561 (2014). doi:10.1007/s11207-012-0184-5

    ADS  Google Scholar 

  • D.K. Lepshokov, A.G. Tlatov, V.V. Vasil’eva, Reconstruction of sunspot characteristics for 1853–1879. Geomagn. Aeron. 52, 843–848 (2012). doi:10.1134/S0016793212070109

    ADS  Google Scholar 

  • R. Leussu, I.G. Usoskin, R. Arlt, K. Mursula, Inconsistency of the Wolf sunspot number series around 1848. Astron. Astrophys. 559, 28 (2013). doi:10.1051/0004-6361/201322373

    ADS  Google Scholar 

  • K.J. Li, P.X. Gao, L.S. Zhan, Synchronization of sunspot numbers and sunspot areas. Sol. Phys. 255, 289–300 (2009). doi:10.1007/s11207-009-9328-7

    ADS  Google Scholar 

  • C. Lindsey, D.C. Braun, Helioseismic holography. Astrophys. J. 485, 895 (1997). doi:10.1086/304445

    ADS  Google Scholar 

  • Y. Liu, J.T. Hoeksema, P.H. Scherrer, J. Schou, S. Couvidat, R.I. Bush, T.L. Duvall, K. Hayashi, X. Sun, X. Zhao, Comparison of line-of-sight magnetograms taken by the solar dynamics observatory/helioseismic and magnetic imager and solar and heliospheric observatory/Michelson Doppler imager. Sol. Phys. 279, 295–316 (2012). doi:10.1007/s11207-012-9976-x

    ADS  Google Scholar 

  • M. Lockwood, Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions. Living Rev. Sol. Phys. 10(4) (2013). doi:10.12942/lrsp-2013-4. http://www.livingreviews.org/lrsp-2013-4

  • J.N. Lockyer, Supplementary note on a spectrum of a solar prominence. Proc. R. Soc. Lond., Ser. A 17, 128 (1868)

    Google Scholar 

  • V.I. Makarov, A.G. Tlatov, The large-scale solar magnetic field and 11-year activity cycles. Astron. Rep. 44, 759–764 (2000). doi:10.1134/1.1320502

    ADS  Google Scholar 

  • V.I. Makarov, A.G. Tlatov, D.K. Callebaut, V.N. Obridko, B.D. Shelting, Large-scale magnetic field and sunspot cycles. Sol. Phys. 198, 409–421 (2001). doi:10.1023/A:1005249531228

    ADS  Google Scholar 

  • T. Maruyama, Solar proxies pertaining to empirical ionospheric total electron content models. J. Geophys. Res. 115, 4306 (2010). doi:10.1029/2009JA014890

    Google Scholar 

  • K. Matthes, K. Kodera, R.R. Garcia, Y. Kuroda, D.R. Marsh, K. Labitzke, The importance of time-varying forcing for QBO modulation of the atmospheric 11 year solar cycle signal. J. Geophys. Res. 118, 4435–4447 (2013). doi:10.1002/jgrd.50424

    Google Scholar 

  • E.W. Maunder, Note on the distribution of Sun-spots in heliographic latitude, 1874–1902. Mon. Not. R. Astron. Soc. 64, 747–761 (1904)

    ADS  Google Scholar 

  • B. Mendoza, V.M. Mendoza, R. Garduño, J. Adem, Modelling the northern hemisphere temperature for solar cycles 24 and 25. J. Atmos. Sol.-Terr. Phys. 72, 1122–1128 (2010). doi:10.1016/j.jastp.2010.05.018

    ADS  Google Scholar 

  • M. Minarovjech, V. Rušin, M. Saniga, The green corona database and the coronal index of solar activity. Contrib. Astron. Obs. Skaln. Pleso 41, 137–141 (2011)

    ADS  Google Scholar 

  • Z. Mouradian, Synoptic data findings, in Synoptic Solar Physics, ed. by K.S. Balasubramaniam, J. Harvey, D. Rabin Astronomical Society of the Pacific Conference Series, vol. 140, 1998, p. 181

    Google Scholar 

  • A. Muñoz-Jaramillo, N.R. Sheeley, J. Zhang, E.E. DeLuca, Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field. Astrophys. J. 753, 146 (2012). doi:10.1088/0004-637X/753/2/146

    ADS  Google Scholar 

  • A. Norton, P. Charbonneau, Observed solar N–S asymmetry in relation to dynamo modeling. Space Sci. Rev. (2014)

  • S. Oberländer, U. Langematz, K. Matthes, M. Kunze, A. Kubin, J. Harder, N.A. Krivova, S.K. Solanki, J. Pagaran, M. Weber, The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle. Geophys. Res. Lett. 39, 1801 (2012). doi:10.1029/2011GL049539

    ADS  Google Scholar 

  • K. Oláh, Z. Kolláth, T. Granzer, K.G. Strassmeier, A.F. Lanza, S. Järvinen, H. Korhonen, S.L. Baliunas, W. Soon, S. Messina, G. Cutispoto, Multiple and changing cycles of active stars. II. Results. Astron. Astrophys. 501, 703–713 (2009). doi:10.1051/0004-6361/200811304

    ADS  Google Scholar 

  • M.J. Owens, R.J. Forsyth, The heliospheric magnetic field. Living Rev. Sol. Phys. 10(5) (2013). doi:10.12942/lrsp-2013-5. http://www.livingreviews.org/lrsp-2013-5

  • A. Özgüç, T. Ataç, J. Rybák, Temporal variability of the flare index (1966–2001). Sol. Phys. 214, 375–396 (2003). doi:10.1023/A:1024225802080

    ADS  Google Scholar 

  • J. Pagaran, M. Weber, J. Burrows, Solar variability from 240 to 1750 nm in terms of faculae brightening and sunspot darkening from SCIAMACHY. Astrophys. J. 700, 1884–1895 (2009a). doi:10.1088/0004-637X/700/2/1884

    ADS  Google Scholar 

  • W.D. Pesnell, Solar cycle predictions (Invited review). Sol. Phys. 281, 507–532 (2012). doi:10.1007/s11207-012-9997-5

    ADS  Google Scholar 

  • C. Petrick, K. Matthes, H. Dobslaw, M. Thomas, Impact of the solar cycle and the QBO on the atmosphere and the ocean. J. Geophys. Res. 117, 17111 (2012). doi:10.1029/2011JD017390

    Google Scholar 

  • G.J.D. Petrie, Solar magnetic activity cycles, coronal potential field models and eruption rates. Astrophys. J. 768, 162 (2013). doi:10.1088/0004-637X/768/2/162

    ADS  Google Scholar 

  • G.J.D. Petrie, K. Petrovay, K. Schatten, Solar polar fields and the 22-year activity cycle: Observations and models. Space Sci. Rev., 1–33 (2014). doi:10.1007/s11214-014-0064-4

  • A.A. Pevtsov, L. Bertello, H. Uitenbroek, On possible variations of basal Ca II K chromospheric line profiles with the solar cycle. Astrophys. J. 767, 56 (2013). doi:10.1088/0004-637X/767/1/56

    ADS  Google Scholar 

  • M.S. Potgieter, Solar modulation of cosmic rays. Living Rev. Sol. Phys. 10(3) (2013). doi:10.12942/lrsp-2013-3

  • D.G. Preminger, S.R. Walton, Modeling solar spectral irradiance and total magnetic flux using sunspot areas. Sol. Phys. 235, 387–405 (2006). doi:10.1007/s11207-006-0044-2

    ADS  Google Scholar 

  • D.G. Preminger, S.R. Walton, From sunspot area to solar variability: a linear transformation. Sol. Phys. 240, 17–23 (2007). doi:10.1007/s11207-007-0335-2

    ADS  Google Scholar 

  • M. Priyal, J. Singh, B. Ravindra, T.G. Priya, K. Amareswari, Long term variations in chromospheric features from Ca-K images at Kodaikanal. Sol. Phys. 289, 137–152 (2014). doi:10.1007/s11207-013-0315-7

    ADS  Google Scholar 

  • T. Pulkkinen, Space weather: terrestrial perspective. Living Rev. Sol. Phys. 4, 1 (2007). doi:10.12942/lrsp-2007-1

    ADS  Google Scholar 

  • T.I. Pulkkinen, M. Palmroth, E.I. Tanskanen, N.Y. Ganushkina, M.A. Shukhtina, N.P. Dmitrieva, Solar wind—magnetosphere coupling: a review of recent results. J. Atmos. Sol.-Terr. Phys. 69, 256–264 (2007). doi:10.1016/j.jastp.2006.05.029

    ADS  Google Scholar 

  • A. Reiners, Observations of cool-star magnetic fields. Living Rev. Sol. Phys. 9, 1 (2012). doi:10.12942/lrsp-2012-1

    ADS  Google Scholar 

  • P. Riley, R. Lionello, J.A. Linker, Z. Mikic, J. Luhmann, J. Wijaya, Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval. Sol. Phys. 274, 361–377 (2011). doi:10.1007/s11207-010-9698-x

    ADS  Google Scholar 

  • P. Riley, M. Ben-Nun, J.A. Linker, Z. Mikic, L. Svalgaard, J. Harvey, L. Bertello, T. Hoeksema, Y. Liu, R. Ulrich, A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms. Sol. Phys. 289, 769–792 (2014). doi:10.1007/s11207-013-0353-1

    ADS  Google Scholar 

  • R.J. Rutten, Observing the solar chromosphere, in The Physics of Chromospheric Plasmas, ed. by P. Heinzel, I. Dorotovič, R.J. Rutten Astronomical Society of the Pacific Conference Series, vol. 368, 2007, p. 27

    Google Scholar 

  • V. Rušin, M. Rybansky, The green corona and magnetic fields. Sol. Phys. 207, 47–61 (2002). doi:10.1023/A:1015587719072

    ADS  Google Scholar 

  • M. Rybanský, V. Rušin, M. Minarovjech, Coronal index of solar activity—solar-terrestrial research. Space Sci. Rev. 95, 227–234 (2001)

    ADS  Google Scholar 

  • M. Rybanský, V. Rušin, M. Minarovjech, L. Klocok, E.W. Cliver, Reexamination of the coronal index of solar activity. J. Geophys. Res. 110, 8106 (2005). doi:10.1029/2005JA011146

    Google Scholar 

  • J.D. Scargle, S.L. Keil, S.P. Worden, Solar cycle variability and surface differential rotation from Ca II K-line time series data. Astrophys. J. 771, 33 (2013). doi:10.1088/0004-637X/771/1/33

    ADS  Google Scholar 

  • C. Scheiner, Rosa Ursina Sive Sol 1626–1630

    Google Scholar 

  • B. Schmieder, V. Archontis, M. Schuessler, E. Pariat, Magnetic flux emergence. Space Sci. Rev. (2014)

  • C.J. Schrijver, J. Cote, C. Zwaan, S.H. Saar, Relations between the photospheric magnetic field and the emission from the outer atmospheres of cool stars. I—The solar CA II K line core emission. Astrophys. J. 337, 964–976 (1989). doi:10.1086/167168

    ADS  Google Scholar 

  • M. Schwabe, Die Sonne. Von Herrn Hofrath Schwabe. Astron. Nachr. 20, 283 (1843). doi:10.1002/asna.18430201706

    ADS  Google Scholar 

  • C.J. Scott, R.G. Harrison, M.J. Owens, M. Lockwood, L. Barnard, Evidence for solar wind modulation of lightning. Environ. Res. Lett. 9(5), 055004 (2014). doi:10.1088/1748-9326/9/5/055004

    ADS  Google Scholar 

  • N.R. Sheeley Jr., A century of polar faculae variations. Astrophys. J. 680, 1553–1559 (2008). doi:10.1086/588251

    ADS  Google Scholar 

  • N.R. Sheeley Jr., T.J. Cooper, J.R.L. Anderson, Carrington maps of Ca II K-line emission for the years 1915–1985. Astrophys. J. 730, 51 (2011). doi:10.1088/0004-637X/730/1/51

    ADS  Google Scholar 

  • K. Shibasaki, C.E. Alissandrakis, S. Pohjolainen, Radio emission of the quiet Sun and active regions (Invited review). Sol. Phys. 273, 309–337 (2011). doi:10.1007/s11207-011-9788-4

    ADS  Google Scholar 

  • K. Shibata, T. Magara, Solar flares: magnetohydrodynamic processes. Living Rev. Sol. Phys. 8, 6 (2011). doi:10.12942/lrsp-2011-6

    ADS  Google Scholar 

  • S. Solanki, N. Krivova, Faculae and Plague. Landolt Börnstein, 4124 (2009). doi:10.1007/978-3-540-88055-4_9

  • S.K. Solanki, B. Inhester, M. Schüssler, The solar magnetic field. Rep. Prog. Phys. 69, 563–668 (2006). doi:10.1088/0034-4885/69/3/R02

    ADS  Google Scholar 

  • S.K. Solanki, N.A. Krivova, J.D. Haigh, Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys. 51, 311–351 (2013). doi:10.1146/annurev-astro-082812-141007

    ADS  Google Scholar 

  • J.O. Stenflo, Solar magnetic fields. J. Astrophys. Astron. 29, 19–28 (2008). doi:10.1007/s12036-008-0003-4

    ADS  Google Scholar 

  • J.O. Stenflo, Solar magnetic fields as revealed by Stokes polarimetry. Astron. Astrophys. Rev. 21, 66 (2013). doi:10.1007/s00159-013-0066-3

    ADS  Google Scholar 

  • M. Stuiver, P.D. Quay, Changes in atmospheric carbon-14 attributed to a variable Sun. Science 207, 11–19 (1980). doi:10.1126/science.207.4426.11

    ADS  Google Scholar 

  • W.T. Sullivan, The Early Years of Radio Astronomy—Reflections Fifty Years After Jansky’s Discovery 1984

    Google Scholar 

  • L. Svalgaard, What geomagnetism can tell us about the solar cycle? Space Sci. Rev. (2014)

  • L. Svalgaard, H.S. Hudson, The solar microwave flux and the sunspot number, in SOHO-23: Understanding a Peculiar Solar Minimum, ed. by S.R. Cranmer, J.T. Hoeksema, J.L. Kohl Astronomical Society of the Pacific Conference Series, vol. 428, 2010, p. 325

    Google Scholar 

  • H. Tanaka, J.P. Castelli, A.E. Covington, A. Krüger, T.L. Landecker, A. Tlamicha, Absolute calibration of solar radio flux density in the microwave region. Sol. Phys. 29, 243–262 (1973). doi:10.1007/BF00153452

    ADS  Google Scholar 

  • K.F. Tapping, The 10.7 cm solar radio flux (F10.7). Space Weather 11, 394–406 (2013). doi:10.1002/swe.20064

    ADS  Google Scholar 

  • K.F. Tapping, J.J. Valdés, Did the Sun change its behaviour during the decline of cycle 23 and into cycle 24? Sol. Phys. 272, 337–350 (2011). doi:10.1007/s11207-011-9827-1

    ADS  Google Scholar 

  • M. Temmer, A. Veronig, A. Hanslmeier, Hemispheric sunspot numbers R n and R s : catalogue and N–S asymmetry analysis. Astron. Astrophys. 390, 707–715 (2002). doi:10.1051/0004-6361:20020758

    ADS  Google Scholar 

  • M. Temmer, J. Rybák, P. Bendík, A. Veronig, F. Vogler, W. Otruba, W. Pötzi, A. Hanslmeier, Hemispheric sunspot numbers {R n } and {R s } from 1945–2004: catalogue and N–S asymmetry analysis for solar cycles 18–23. Astron. Astrophys. 447, 735–743 (2006). doi:10.1051/0004-6361:20054060

    ADS  Google Scholar 

  • G. Thuillier, S.M.L. Melo, J. Lean, N.A. Krivova, C. Bolduc, V.I. Fomichev, P. Charbonneau, A.I. Shapiro, W. Schmutz, D. Bolsée, Analysis of different solar spectral irradiance reconstructions and their impact on solar heating rates. Sol. Phys. 289, 1115–1142 (2014). doi:10.1007/s11207-013-0381-x

    ADS  Google Scholar 

  • H. Uitenbroek, Operator perturbation method for multi-level line transfer with partial redistribution. Astron. Astrophys. 213, 360–370 (1989)

    ADS  Google Scholar 

  • I.G. Usoskin, A history of solar activity over millennia. Living Rev. Sol. Phys. 10, 1 (2013). doi:10.12942/lrsp-2013-1

    ADS  Google Scholar 

  • I. Usoskin, G. Bazilevskaya, E. Cliver, G. Kovaltsov, Solar cycle in the heliosphere and cosmic rays. Space Sci. Rev. (2014)

  • H. van Loon, J. Brown, R.F. Milliff, Trends in sunspots and North Atlantic sea level pressure. J. Geophys. Res. 117, 7106 (2012). doi:10.1029/2012JD017502

    Google Scholar 

  • J.M. Vaquero, R.M. Trigo, Revised group sunspot number values for 1640, 1652, and 1741. Sol. Phys. 289, 803–808 (2014). doi:10.1007/s11207-013-0360-2

    ADS  Google Scholar 

  • J.M. Vaquero, R.M. Trigo, M.C. Gallego, A simple method to check the reliability of annual sunspot number in the historical period 1610–1847. Sol. Phys. 277, 389–395 (2012). doi:10.1007/s11207-011-9901-8

    ADS  Google Scholar 

  • V.V. Vasil’Eva, V.I. Makarov, A.G. Tlatov, Rotation cycles of the sector structure of the solar magnetic field and its activity. Astron. Lett. 28, 199–205 (2002). doi:10.1134/1.1458351

    ADS  Google Scholar 

  • I.I. Virtanen, K. Mursula, North-South asymmetric solar cycle evolution: signatures in the photosphere and consequences in the corona. Astrophys. J. 781, 99 (2014). doi:10.1088/0004-637X/781/2/99

    ADS  Google Scholar 

  • Y.-M. Wang, Solar cycle variation of the Sun’s low-order magnetic multipoles: Heliospheric consequences. Space Sci. Rev., 1–21 (2014). doi:10.1007/s11214-014-0051-9

  • D.M. Willis, R. Henwood, M.N. Wild, H.E. Coffey, W.F. Denig, E.H. Erwin, D.V. Hoyt, The Greenwich photo-heliographic results (1874–1976): procedures for checking and correcting the sunspot digital datasets. Sol. Phys. 288, 141–156 (2013a). doi:10.1007/s11207-013-0312-x

    ADS  Google Scholar 

  • D.M. Willis, H.E. Coffey, R. Henwood, E.H. Erwin, D.V. Hoyt, M.N. Wild, W.F. Denig, The Greenwich photo-heliographic results (1874–1976): summary of the observations, applications, datasets, definitions and errors. Sol. Phys. 288, 117–139 (2013b). doi:10.1007/s11207-013-0311-y

    ADS  Google Scholar 

  • R.C. Willson, S. Gulkis, M. Janssen, H.S. Hudson, G.A. Chapman, Observations of solar irradiance variability. Science 211, 700–702 (1981). doi:10.1126/science.211.4483.700

    ADS  Google Scholar 

  • K.L. Yeo, N.A. Krivova, S.K. Solanki, Solar cycle variation in solar irradiance. Space Sci. Rev., 1–31 (2014). doi:10.1007/s11214-014-0061-7

Download references

Acknowledgements

The authors are grateful to the International Space Science Institute, Bern, for the organization of the workshop “The Solar Activity Cycle: Physical Causes and Consequences”, the invitation to contribute to it, and the kind support received to the purpose. The authors thank Fabrizio Giorgi for preparing Figs. 1 to 8. This study received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration, under the Grant Agreements of the eHEROES (No. 284461, www.eheroes.eu), SOLARNET (No. 312495, www.solarnet-east.eu), and SOLID (No. 313188, projects.pmodwrc.ch/solid/) projects. It was also supported by COST Action ES1005 “TOSCA” (www.tosca-cost.eu). LvDG’s work was supported by the Hungarian Research grants OTKA K-081421 and K-109276, and by the STFC Consolidated Grant ST/H00260/1.

Final acknowledgements go to the many observers and astronomers, both amateur and professional, for performing the regular observations of the solar atmosphere and creating the databases of solar indices described in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Ermolli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermolli, I., Shibasaki, K., Tlatov, A. et al. Solar Cycle Indices from the Photosphere to the Corona: Measurements and Underlying Physics. Space Sci Rev 186, 105–135 (2014). https://doi.org/10.1007/s11214-014-0089-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0089-8

Keywords

Navigation