Skip to main content

Solar Cycle Variation in Solar Irradiance

  • Chapter
The Solar Activity Cycle

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 53))

Abstract

The correlation between solar irradiance and the 11-year solar activity cycle is evident in the body of measurements made from space, which extend over the past four decades. Models relating variation in solar irradiance to photospheric magnetism have made significant progress in explaining most of the apparent trends in these observations. There are, however, persistent discrepancies between different measurements and models in terms of the absolute radiometry, secular variation and the spectral dependence of the solar cycle variability. We present an overview of solar irradiance measurements and models, and discuss the key challenges in reconciling the divergence between the two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • C.G. Abbot, F.E. Fowle, L.B. Aldrich, Chapter VI. Ann. Astrophys. Obs. Smithson. Inst. 4, 177–215 (1923)

    ADS  Google Scholar 

  • N. Afram, Y.C. Unruh, S.K. Solanki, M. Schüssler, A. Lagg, A. Vögler, Intensity contrast from MHD simulations and HINODE observations. Astron. Astrophys. 526, A120 (2011). doi:10.1051/0004-6361/201015582

    ADS  Google Scholar 

  • W.T. Ball, Y.C. Unruh, N.A. Krivova, S.K. Solanki, J.W. Harder, Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model. Astron. Astrophys. 530, A71 (2011). doi:10.1051/0004-6361/201016189

    ADS  Google Scholar 

  • W.T. Ball, Y.C. Unruh, N.A. Krivova, S.K. Solanki, T. Wenzler, D.J. Mortlock, A.H. Jaffe, Reconstruction of total solar irradiance 1974–2009. Astron. Astrophys. 541, A27 (2012). doi:10.1051/0004-6361/201118702

    ADS  Google Scholar 

  • W.T. Ball, N.A. Krivova, Y.C. Unruh, J.D. Haigh, S.K. Solanki, A new SATIRE-S spectral solar irradiance dataset for solar cycles 21–23 and its implications for stratospheric ozone. J. Atmos. Sci. (2014, submitted)

    Google Scholar 

  • L.A. Balmaceda, S.K. Solanki, N.A. Krivova, S. Foster, A homogeneous database of sunspot areas covering more than 130 years. J. Geophys. Res. 114, 7104 (2009). doi:10.1029/2009JA014299

    Google Scholar 

  • P. Barthol, A. Gandorfer, S.K. Solanki, M. Schüssler, B. Chares, W. Curdt, W. Deutsch, A. Feller, D. Germerott, B. Grauf, K. Heerlein, J. Hirzberger, M. Kolleck, R. Meller, R. Müller, T.L. Riethmüller, G. Tomasch, M. Knölker, B.W. Lites, G. Card, D. Elmore, J. Fox, A. Lecinski, P. Nelson, R. Summers, A. Watt, V. Martínez Pillet, J.A. Bonet, W. Schmidt, T. Berkefeld, A.M. Title, V. Domingo, J.L. Gasent Blesa, J.C. Del Toro Iniesta, A. López Jiménez, A. Álvarez-Herrero, L. Sabau-Graziati, C. Widani, P. Haberler, K. Härtel, D. Kampf, T. Levin, I. Pérez Grande, A. Sanz-Andrés, E. Schmidt, The SUNRISE mission. Sol. Phys. 268, 1–34 (2011). doi:10.1007/s11207-010-9662-9

    ADS  Google Scholar 

  • G.E. Brueckner, K.L. Edlow, L.E. Floyd IV, J.L. Lean, M.E. Vanhoosier, The Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) experiment on board the Upper Atmosphere Research Satellite (UARS). J. Geophys. Res. 98, 10695 (1993). doi:10.1029/93JD00410

    ADS  Google Scholar 

  • J.J. Butler, B.C. Johnson, J.P. Rice, E.L. Shirley, R.A. Barnes, Sources of differences in on-orbit total solar irradiance measurements and description of a proposed laboratory intercomparison. J. Res. Natl. Inst. Stand. Technol. 113, 187–203 (2008)

    Google Scholar 

  • M. Carlsson, R.F. Stein, Å. Nordlund, G.B. Scharmer, Observational manifestations of solar magnetoconvection: center-to-limb variation. Astrophys. J. Lett. 610, 137–140 (2004). doi:10.1086/423305

    ADS  Google Scholar 

  • G.A. Chapman, A.M. Cookson, J.J. Dobias, Variations in total solar irradiance during solar cycle 22. J. Geophys. Res. 101, 13541–13548 (1996). doi:10.1029/96JA00683

    ADS  Google Scholar 

  • G.A. Chapman, A.M. Cookson, D.G. Preminger, Comparison of TSI from SORCE TIM with SFO ground-based photometry. Sol. Phys. 276, 35–41 (2012). doi:10.1007/s11207-011-9867-6

    ADS  Google Scholar 

  • G.A. Chapman, A.M. Cookson, D.G. Preminger, Modeling total solar irradiance with San Fernando Observatory ground-based photometry: comparison with ACRIM, PMOD, and RMIB composites. Sol. Phys. 283, 295–305 (2013). doi:10.1007/s11207-013-0233-8

    ADS  Google Scholar 

  • P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7, 3 (2010). doi:10.12942/lrsp-2010-3

    ADS  Google Scholar 

  • J.-F. Cossette, P. Charbonneau, P.K. Smolarkiewicz, Cyclic thermal signature in a global MHD simulation of solar convection. Astrophys. J. Lett. 777, 29 (2013). doi:10.1088/2041-8205/777/2/L29

    ADS  Google Scholar 

  • R.L. Coulter, J.R. Kuhn, RISE/PSPT as an experiment to study active region irradiance and luminosity evolution, in Solar Active Region Evolution: Comparing Models with Observations, ed. by K.S. Balasubramaniam, G.W. Simon. Astr. Soc. P., vol. 68 (1994), p. 37

    Google Scholar 

  • S. Danilovic, A. Gandorfer, A. Lagg, M. Schüssler, S.K. Solanki, A. Vögler, Y. Katsukawa, S. Tsuneta, The intensity contrast of solar granulation: comparing Hinode SP results with MHD simulations. Astron. Astrophys. 484, L17–L20 (2008). doi:10.1051/0004-6361:200809857

    ADS  Google Scholar 

  • S. Danilovic, D. Röhrbein, R.H. Cameron, M. Schüssler, On the relation between continuum brightness and magnetic field in solar active regions. Astron. Astrophys. 550, A118 (2013). doi:10.1051/0004-6361/201219726

    ADS  Google Scholar 

  • M.T. DeLand, R.P. Cebula, Solar UV activity at solar cycle 21 and 22 minimum from NOAA-9 SBUV/2 Data. Sol. Phys. 177, 105–116 (1998). doi:10.1023/A:1004931218139

    ADS  Google Scholar 

  • M.T. DeLand, R.P. Cebula, Creation of a composite solar ultraviolet irradiance data set. J. Geophys. Res. 113(A12), 11103 (2008). doi:10.1029/2008JA013401

    Google Scholar 

  • M.T. DeLand, R.P. Cebula, Solar UV variations during the decline of cycle 23. J. Atmos. Sol.-Terr. Phys. 77, 225–234 (2012). doi:10.1016/j.jastp.2012.01.007

    ADS  Google Scholar 

  • S. Dewitte, D. Crommelynck, A. Joukoff, Total solar irradiance observations from DIARAD/VIRGO. J. Geophys. Res. 109, 2102 (2004a). doi:10.1029/2002JA009694

    Google Scholar 

  • S. Dewitte, D. Crommelynck, S. Mekaoui, A. Joukoff, Measurement and uncertainty of the long-term total solar irradiance trend. Sol. Phys. 224, 209–216 (2004b). doi:10.1007/s11207-005-5698-7

    ADS  Google Scholar 

  • V. Domingo, I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, N. Krivova, G. Kopp, W. Schmutz, S.K. Solanki, H.C. Spruit, Y. Unruh, A. Vögler, Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev. 145, 337–380 (2009). doi:10.1007/s11214-009-9562-1

    ADS  Google Scholar 

  • T. Dudok de Wit, S. Bruinsma, K. Shibasaki, Synoptic radio observations as proxies for upper atmosphere modelling. J. Space Weather Space Clim. 4(26), 260000 (2014). doi:10.1051/swsc/2014003

    Google Scholar 

  • J.A. Eddy, The Maunder minimum. Science 192, 1189–1202 (1976). doi:10.1126/science.192.4245.1189

    ADS  Google Scholar 

  • I. Ermolli, S. Criscuoli, F. Giorgi, Recent results from optical synoptic observations of the solar atmosphere with ground-based instruments. Contrib. Astron. Obs. Skaln. Pleso 41, 73–84 (2011)

    ADS  Google Scholar 

  • I. Ermolli, M. Fofi, C. Bernacchia, F. Berrilli, B. Caccin, A. Egidi, A. Florio, The prototype RISE-PSPT instrument operating in Rome. Sol. Phys. 177, 1–10 (1998). doi:10.1023/A:1004932431519

    ADS  Google Scholar 

  • I. Ermolli, B. Caccin, M. Centrone, V. Penza, Modeling solar irradiance variations through full-disk images and semi-empirical atmospheric models. Mem. Soc. Astron. Ital. 74, 603 (2003)

    ADS  Google Scholar 

  • I. Ermolli, S. Criscuoli, M. Centrone, F. Giorgi, V. Penza, Photometric properties of facular features over the activity cycle. Astron. Astrophys. 465, 305–314 (2007). doi:10.1051/0004-6361:20065995

    ADS  Google Scholar 

  • I. Ermolli, S. Criscuoli, H. Uitenbroek, F. Giorgi, M.P. Rast, S.K. Solanki, Radiative emission of solar features in the Ca II K line: comparison of measurements and models. Astron. Astrophys. 523, A55 (2010). doi:10.1051/0004-6361/201014762

    ADS  Google Scholar 

  • I. Ermolli, K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, M. Weber, Y.C. Unruh, L. Gray, U. Langematz, P. Pilewskie, E. Rozanov, W. Schmutz, A. Shapiro, S.K. Solanki, T.N. Woods, Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. 13, 3945–3977 (2013). doi:10.5194/acp-13-3945-2013

    ADS  Google Scholar 

  • A. Fehlmann, G. Kopp, W. Schmutz, R. Winkler, W. Finsterle, N. Fox, Fourth world radiometric reference to SI radiometric scale comparison and implications for on-orbit measurements of the total solar irradiance. Metrologia 49, 34 (2012). doi:10.1088/0026-1394/49/2/S34

    ADS  Google Scholar 

  • M. Fligge, S.K. Solanki, Y.C. Unruh, Modelling irradiance variations from the surface distribution of the solar magnetic field. Astron. Astrophys. 353, 380–388 (2000)

    ADS  Google Scholar 

  • L.E. Floyd, J.W. Cook, L.C. Herring, P.C. Crane, SUSIM’S 11-year observational record of the solar UV irradiance. Adv. Space Res. 31, 2111–2120 (2003). doi:10.1016/S0273-1177(03)00148-0

    ADS  Google Scholar 

  • J.M. Fontenla, J. Harder, G. Rottman, T.N. Woods, G.M. Lawrence, S. Davis, The signature of solar activity in the infrared spectral irradiance. Astrophys. J. Lett. 605, 85–88 (2004). doi:10.1086/386335

    ADS  Google Scholar 

  • J.M. Fontenla, E. Avrett, G. Thuillier, J. Harder, Semiempirical models of the solar atmosphere. I. The quiet- and active Sun photosphere at moderate resolution. Astrophys. J. 639, 441–458 (2006). doi:10.1086/499345

    ADS  Google Scholar 

  • J.M. Fontenla, W. Curdt, M. Haberreiter, J. Harder, H. Tian, Semiempirical models of the solar atmosphere. III. Set of non-LTE models for far-ultraviolet/extreme-ultraviolet irradiance computation. Astrophys. J. 707, 482–502 (2009). doi:10.1088/0004-637X/707/1/482

    ADS  Google Scholar 

  • J.M. Fontenla, J. Harder, W. Livingston, M. Snow, T. Woods, High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res. 116(D15), 20108 (2011). doi:10.1029/2011JD016032

    Google Scholar 

  • J. Fontenla, O.R. White, P.A. Fox, E.H. Avrett, R.L. Kurucz, Calculation of solar irradiances. I. Synthesis of the solar spectrum. Astrophys. J. 518, 480–499 (1999). doi:10.1086/307258

    ADS  Google Scholar 

  • P. Foukal, J. Lean, The influence of faculae on total solar irradiance and luminosity. Astrophys. J. 302, 826–835 (1986). doi:10.1086/164043

    ADS  Google Scholar 

  • P. Foukal, J. Lean, Magnetic modulation of solar luminosity by photospheric activity. Astrophys. J. 328, 347–357 (1988). doi:10.1086/166297

    ADS  Google Scholar 

  • P. Foukal, A. Ortiz, R. Schnerr, Dimming of the 17th century Sun. Astrophys. J. Lett. 733, 38 (2011). doi:10.1088/2041-8205/733/2/L38

    ADS  Google Scholar 

  • E.N. Frazier, Multi-channel magnetograph observations. III: Faculae. Sol. Phys. 21, 42–53 (1971). doi:10.1007/BF00155772

    ADS  Google Scholar 

  • C. Fröhlich, Observations of irradiance variations. Space Sci. Rev. 94, 15–24 (2000). doi:10.1023/A:1026765712084

    ADS  Google Scholar 

  • C. Fröhlich, Solar irradiance variability since 1978. Revision of the PMOD composite during Solar Cycle 21. Space Sci. Rev. 125, 53–65 (2006). doi:10.1007/s11214-006-9046-5

    ADS  Google Scholar 

  • C. Fröhlich, Evidence of a long-term trend in total solar irradiance. Astron. Astrophys. 501, L27–L30 (2009). doi:10.1051/0004-6361/200912318

    ADS  Google Scholar 

  • C. Fröhlich, Solar radiometry. ISSI Sci. Rep. Ser. 9, 525–540 (2010)

    ADS  Google Scholar 

  • C. Fröhlich, Total solar irradiance observations. Surv. Geophys. 33, 453–473 (2012). doi:10.1007/s10712-011-9168-5

    ADS  Google Scholar 

  • C. Fröhlich, Total solar irradiance: what have we learned from the last three cycles and the recent minimum? Space Sci. Rev. 176, 237–252 (2013). doi:10.1007/s11214-011-9780-1

    ADS  Google Scholar 

  • C. Fröhlich, J.M. Pap, H.S. Hudson, Improvement of the photometric sunspot index and changes of the disk-integrated sunspot contrast with time. Sol. Phys. 152, 111–118 (1994). doi:10.1007/BF01473192

    ADS  Google Scholar 

  • C. Fröhlich, J. Romero, H. Roth, C. Wehrli, B.N. Andersen, T. Appourchaux, V. Domingo, U. Telljohann, G. Berthomieu, P. Delache, J. Provost, T. Toutain, D.A. Crommelynck, A. Chevalier, A. Fichot, W. Däppen, D. Gough, T. Hoeksema, A. Jiménez, M.F. Gómez, J.M. Herreros, T.R. Cortés, A.R. Jones, J.M. Pap, R.C. Willson, VIRGO: experiment for helioseismology and solar irradiance monitoring. Sol. Phys. 162, 101–128 (1995). doi:10.1007/BF00733428

    ADS  Google Scholar 

  • C. Fröhlich, D.A. Crommelynck, C. Wehrli, M. Anklin, S. Dewitte, A. Fichot, W. Finsterle, A. Jiménez, A. Chevalier, H. Roth, In-flight performance of the VIRGO solar irradiance instruments on SOHO. Sol. Phys. 175, 267–286 (1997). doi:10.1023/A:1004929108864

    ADS  Google Scholar 

  • U. Grossmann-Doerth, M. Knölker, M. Schüssler, S.K. Solanki, The deep layers of solar magnetic elements. Astron. Astrophys. 285, 648–654 (1994)

    ADS  Google Scholar 

  • M. Haberreiter, W. Schmutz, I. Hubeny, NLTE model calculations for the solar atmosphere with an iterative treatment of opacity distribution functions. Astron. Astrophys. 492, 833–840 (2008). doi:10.1051/0004-6361:200809503

    ADS  Google Scholar 

  • M. Haberreiter, N.A. Krivova, W. Schmutz, T. Wenzler, Reconstruction of the solar UV irradiance back to 1974. Adv. Space Res. 35, 365–369 (2005). doi:10.1016/j.asr.2005.04.039

    ADS  Google Scholar 

  • J.W. Harder, J. Fontenla, G. Lawrence, T. Woods, G. Rottman, The spectral irradiance monitor: measurement equations and calibration. Sol. Phys. 230, 169–204 (2005a). doi:10.1007/s11207-005-1528-1

    ADS  Google Scholar 

  • J.W. Harder, G. Lawrence, J. Fontenla, G. Rottman, T. Woods, The spectral irradiance monitor: scientific requirements, instrument design, and operation modes. Sol. Phys. 230, 141–167 (2005b). doi:10.1007/s11207-005-5007-5

    ADS  Google Scholar 

  • J.W. Harder, J.M. Fontenla, P. Pilewskie, E.C. Richard, T.N. Woods, Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett. 36, 7801 (2009). doi:10.1029/2008GL036797

    ADS  Google Scholar 

  • D.H. Hathaway, The solar cycle. Living Rev. Sol. Phys. 7, 1 (2010). doi:10.12942/lrsp-2010-1

    ADS  Google Scholar 

  • D.F. Heath, B.M. Schlesinger, The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res. 91, 8672–8682 (1986). doi:10.1029/JD091iD08p08672

    ADS  Google Scholar 

  • J.R. Hickey, L.L. Stowe, H. Jacobowitz, P. Pellegrino, R.H. Maschhoff, F. House, T.H. Vonder Haar, Initial solar irradiance determinations from Nimbus 7 cavity radiometer measurements. Science 208, 281–283 (1980). doi:10.1126/science.208.4441.281

    ADS  Google Scholar 

  • R. Holzreuter, S.K. Solanki, Three-dimensional non-LTE radiative transfer effects in Fe I lines. II. Line formation in 3D radiation hydrodynamic simulations. Astron. Astrophys. 558, A20 (2013). doi:10.1051/0004-6361/201322135

    ADS  Google Scholar 

  • D.V. Hoyt, H.L. Kyle, J.R. Hickey, R.H. Maschhoff, The NIMBUS 7 solar total irradiance—a new algorithm for its derivation. J. Geophys. Res. 97, 51–63 (1992). doi:10.1029/91JA02488

    ADS  Google Scholar 

  • H.S. Hudson, Observed variability of the solar luminosity. Annu. Rev. Astron. Astrophys. 26, 473–507 (1988). doi:10.1146/annurev.aa.26.090188.002353

    ADS  Google Scholar 

  • H.S. Hudson, S. Silva, M. Woodard, R.C. Willson, The effects of sunspots on solar irradiance. Sol. Phys. 76, 211–219 (1982). doi:10.1007/BF00170984

    ADS  Google Scholar 

  • H.P. Jones, T.L. Duvall Jr., J.W. Harvey, C.T. Mahaffey, J.D. Schwitters, J.E. Simmons, The NASA/NSO spectromagnetograph. Sol. Phys. 139, 211–232 (1992). doi:10.1007/BF00159149

    ADS  Google Scholar 

  • S.L. Keil, T.W. Henry, B. Fleck, NSO/AFRL/Sac peak K-line monitoring program, in Synoptic Solar Physics, ed. by K.S. Balasubramaniam, J. Harvey, D. Rabin. ASP Conf. Ser., vol. 140 (1998), p. 301

    Google Scholar 

  • C.U. Keller, M. Schüssler, A. Vögler, V. Zakharov, On the origin of solar faculae. Astrophys. J. Lett. 607, 59–62 (2004). doi:10.1086/421553

    ADS  Google Scholar 

  • M. Knölker, U. Grossmann-Doerth, M. Schüssler, E. Weisshaar, Some developments in the theory of magnetic flux concentrations in the solar atmosphere. Adv. Space Res. 11, 285–295 (1991). doi:10.1016/0273-1177(91)90393-X

    ADS  Google Scholar 

  • P. Kobel, S.K. Solanki, J.M. Borrero, The continuum intensity as a function of magnetic field. I. Active region and quiet Sun magnetic elements. Astron. Astrophys. 531, A112 (2011). doi:10.1051/0004-6361/201016255

    ADS  Google Scholar 

  • G. Kopp, G. Lawrence, The Total Irradiance Monitor (TIM): instrument design. Sol. Phys. 230, 91–109 (2005). doi:10.1007/s11207-005-7446-4

    ADS  Google Scholar 

  • G. Kopp, J.L. Lean, A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett. 38, 1706 (2011). doi:10.1029/2010GL045777

    ADS  Google Scholar 

  • G. Kopp, K. Heuerman, G. Lawrence, The Total Irradiance Monitor (TIM): instrument calibration. Sol. Phys. 230, 111–127 (2005a). doi:10.1007/s11207-005-7447-3

    ADS  Google Scholar 

  • G. Kopp, G. Lawrence, G. Rottman, The Total Irradiance Monitor (TIM): science results. Sol. Phys. 230, 129–139 (2005b). doi:10.1007/s11207-005-7433-9

    ADS  Google Scholar 

  • G. Kopp, K. Heuerman, D. Harber, G. Drake, The TSI radiometer facility: absolute calibrations for total solar irradiance instruments. Proc. SPIE 6677, 667709 (2007). doi:10.1117/12.734553, 12 pp.

    Google Scholar 

  • G. Kopp, A. Fehlmann, W. Finsterle, D. Harber, K. Heuerman, R. Willson, Total solar irradiance data record accuracy and consistency improvements. Metrologia 49, 29 (2012). doi:10.1088/0026-1394/49/2/S29

    ADS  Google Scholar 

  • N.A. Krivova, S.K. Solanki, L. Floyd, Reconstruction of solar UV irradiance in cycle 23. Astron. Astrophys. 452, 631–639 (2006). doi:10.1051/0004-6361:20064809

    ADS  Google Scholar 

  • N.A. Krivova, S.K. Solanki, Y.C. Unruh, Towards a long-term record of solar total and spectral irradiance. J. Atmos. Sol.-Terr. Phys. 73, 223–234 (2011). doi:10.1016/j.jastp.2009.11.013

    ADS  Google Scholar 

  • N.A. Krivova, S.K. Solanki, M. Fligge, Y.C. Unruh, Reconstruction of solar irradiance variations in cycle 23: is solar surface magnetism the cause? Astron. Astrophys. 399, 1–4 (2003). doi:10.1051/0004-6361:20030029

    ADS  Google Scholar 

  • J.R. Kuhn, K.G. Libbrecht, R.H. Dicke, The surface temperature of the sun and changes in the solar constant. Science 242, 908–911 (1988). doi:10.1126/science.242.4880.908

    ADS  Google Scholar 

  • R. Kurucz, ATLAS9 stellar atmosphere programs and 2 km/s grid. Kurucz CD-ROM no. 13. (Smithsonian Astrophysical Observatory, Cambridge, 1993)

    Google Scholar 

  • A. Lagg, S.K. Solanki, T.L. Riethmüller, V. Martínez Pillet, M. Schüssler, J. Hirzberger, A. Feller, J.M. Borrero, W. Schmidt, J.C. del Toro Iniesta, J.A. Bonet, P. Barthol, T. Berkefeld, V. Domingo, A. Gandorfer, M. Knölker, A.M. Title, Fully resolved quiet-Sun magnetic flux tube observed with the SUNRISE/IMAX instrument. Astrophys. J. Lett. 723, 164–168 (2010). doi:10.1088/2041-8205/723/2/L164

    ADS  Google Scholar 

  • J. Lean, Evolution of the Sun’s spectral irradiance since the Maunder minimum. Geophys. Res. Lett. 27, 2425–2428 (2000). doi:10.1029/2000GL000043

    ADS  Google Scholar 

  • J.L. Lean, M.T. DeLand, How does the Sun’s spectrum vary? J. Climate 25, 2555–2560 (2012). doi:10.1175/JCLI-D-11-00571.1

    ADS  Google Scholar 

  • J.L. Lean, G.J. Rottman, H.L. Kyle, T.N. Woods, J.R. Hickey, L.C. Puga, Detection and parameterization of variations in solar mid- and near-ultraviolet radiation (200–400 nm). J. Geophys. Res. 102, 29939–29956 (1997). doi:10.1029/97JD02092

    ADS  Google Scholar 

  • R.B. Lee III, B.R. Barkstrom, R.D. Cess, Characteristics of the Earth radiation budget experiment solar monitors. Appl. Opt. 26, 3090–3096 (1987). doi:10.1364/AO.26.003090

    ADS  Google Scholar 

  • R.B. Lee III, M.A. Gibson, R.S. Wilson, S. Thomas, Long-term total solar irradiance variability during sunspot cycle 22. J. Geophys. Res. 100, 1667–1675 (1995). doi:10.1029/94JA02897

    ADS  Google Scholar 

  • J.R. Lemen, A.M. Title, D.J. Akin, P.F. Boerner, C. Chou, J.F. Drake, D.W. Duncan, C.G. Edwards, F.M. Friedlaender, G.F. Heyman, N.E. Hurlburt, N.L. Katz, G.D. Kushner, M. Levay, R.W. Lindgren, D.P. Mathur, E.L. McFeaters, S. Mitchell, R.A. Rehse, C.J. Schrijver, L.A. Springer, R.A. Stern, T.D. Tarbell, J.-P. Wuelser, C.J. Wolfson, C. Yanari, J.A. Bookbinder, P.N. Cheimets, D. Caldwell, E.E. Deluca, R. Gates, L. Golub, S. Park, W.A. Podgorski, R.I. Bush, P.H. Scherrer, M.A. Gummin, P. Smith, G. Auker, P. Jerram, P. Pool, R. Soufli, D.L. Windt, S. Beardsley, M. Clapp, J. Lang, N. Waltham, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 17–40 (2012). doi:10.1007/s11207-011-9776-8

    ADS  Google Scholar 

  • J. Lilensten, T. Dudok de Wit, M. Kretzschmar, P.-O. Amblard, S. Moussaoui, J. Aboudarham, F. Auchère, Review on the solar spectral variability in the EUV for space weather purposes. Ann. Geophys. 26, 269–279 (2008). doi:10.5194/angeo-26-269-2008

    ADS  Google Scholar 

  • W.C. Livingston, J. Harvey, A.K. Pierce, D. Schrage, B. Gillespie, J. Simmons, C. Slaughter, Kitt peak 60-cm vacuum telescope. Appl. Opt. 15, 33–39 (1976). doi:10.1364/AO.15.000033

    ADS  Google Scholar 

  • S.K. Mathew, V. Zakharov, S.K. Solanki, Stray light correction and contrast analysis of Hinode broad-band images. Astron. Astrophys. 501, L19–L22 (2009). doi:10.1051/0004-6361/200911975

    ADS  Google Scholar 

  • S.K. Mathew, V. Martínez Pillet, S.K. Solanki, N.A. Krivova, Properties of sunspots in cycle 23. I. Dependence of brightness on sunspot size and cycle phase. Astron. Astrophys. 465, 291–304 (2007). doi:10.1051/0004-6361:20066356

    ADS  Google Scholar 

  • W.E. McClintock, G.J. Rottman, T.N. Woods, Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): instrument concept and design. Sol. Phys. 230, 225–258 (2005). doi:10.1007/s11207-005-7432-x

    ADS  Google Scholar 

  • S. Mekaoui, S. Dewitte, Total solar irradiance measurement and modelling during cycle 23. Sol. Phys. 247, 203–216 (2008). doi:10.1007/s11207-007-9070-y

    ADS  Google Scholar 

  • A.W. Merkel, J.W. Harder, D.R. Marsh, A.K. Smith, J.M. Fontenla, T.N. Woods, The impact of solar spectral irradiance variability on middle atmospheric ozone. Geophys. Res. Lett. 38, 13802 (2011). doi:10.1029/2011GL047561

    ADS  Google Scholar 

  • W.E. Mitchell Jr., W.C. Livingston, Line-blanketing variations in the irradiance spectrum of the sun from maximum to minimum of the solar cycle. Astrophys. J. 372, 336–348 (1991). doi:10.1086/169980

    ADS  Google Scholar 

  • R. Moll, R.H. Cameron, M. Schüssler, Vortices, shocks, and heating in the solar photosphere: effect of a magnetic field. Astron. Astrophys. 541, A68 (2012). doi:10.1051/0004-6361/201218866

    ADS  Google Scholar 

  • J.S. Morrill, K.P. Dere, C.M. Korendyke, The sources of solar ultraviolet variability between 2765 and 2885 Å: Mg I, Mg II, Si I, and continuum. Astrophys. J. 557, 854–863 (2001). doi:10.1086/321683

    ADS  Google Scholar 

  • J.S. Morrill, L. Floyd, D. McMullin, The solar ultraviolet spectrum estimated using the Mg II index and Ca II K disk activity. Sol. Phys. 269, 253–267 (2011). doi:10.1007/s11207-011-9708-7

    ADS  Google Scholar 

  • R. Munro, C. Anderson, J. Callies, J. Callies, E. Corpaccioli, R. Lang, A. Lefebvre, Y. Livschitz, A. Pérez Albiñana, GOME-2 on MetOp, in Atmospheric Science Conference. ESA Sp. Pub., vol. 628 (2006)

    Google Scholar 

  • Z.E. Musielak, P. Ulmschneider, Atmospheric oscillations in solar magnetic flux tubes. I. Excitation by longitudinal tube waves and random pulses. Astron. Astrophys. 400, 1057–1064 (2003). doi:10.1051/0004-6361:20030023

    ADS  Google Scholar 

  • A. Ortiz, S.K. Solanki, V. Domingo, M. Fligge, B. Sanahuja, On the intensity contrast of solar photospheric faculae and network elements. Astron. Astrophys. 388, 1036–1047 (2002). doi:10.1051/0004-6361:20020500

    ADS  Google Scholar 

  • L. Oster, K.H. Schatten, S. Sofia, Solar irradiance variations due to active regions. Astrophys. J. 256, 768–773 (1982). doi:10.1086/159949

    ADS  Google Scholar 

  • J. Pagaran, M. Weber, J. Burrows, Solar variability from 240 to 1750 nm in terms of faculae brightening and sunspot darkening from SCIAMACHY. Astrophys. J. 700, 1884–1895 (2009). doi:10.1088/0004-637X/700/2/1884

    ADS  Google Scholar 

  • V. Penza, B. Caccin, I. Ermolli, M. Centrone, M.T. Gomez, Modeling solar irradiance variations through PSPT images and semiempirical models, in Solar Variability as an Input to the Earth’s Environment, ed. by A. Wilson. ESA Sp. Pub., vol. 535 (2003), pp. 299–302

    Google Scholar 

  • D.G. Preminger, S.R. Walton, G.A. Chapman, Photometric quantities for solar irradiance modelling. J. Geophys. Res. 107, 1354 (2002). doi:10.1029/2001JA009169

    Google Scholar 

  • M. Rempel, R. Schlichenmaier, Sunspot modelling: from simplified models to radiative MHD simulations. Living Rev. Sol. Phys. 8, 3 (2011). doi:10.12942/lrsp-2011-3

    ADS  Google Scholar 

  • E.C. Richard, D. Harber, J.W. Harder, P. Pilewskie, S. Brown, A. Smith, K. Lykke, Future long-term measurements of solar spectral irradiance by JPSS TSIS. AGU Fall Meeting Abstracts 917 (2011)

    Google Scholar 

  • T.L. Riethmüller, S.K. Solanki, V. Martínez Pillet, J. Hirzberger, A. Feller, J.A. Bonet, N. Bello González, M. Franz, M. Schüssler, P. Barthol, T. Berkefeld, J.C. del Toro Iniesta, V. Domingo, A. Gandorfer, M. Knölker, W. Schmidt, Bright points in the quiet Sun as observed in the visible and near-UV by the balloon-borne observatory SUNRISE. Astrophys. J. Lett. 723, 169–174 (2010). doi:10.1088/2041-8205/723/2/L169

    ADS  Google Scholar 

  • T.L. Riethmüller, S.K. Solanki, S.V. Berdyugina, M. Schüssler, V. Martínez Pillet, A. Feller, A. Gandorfer, J. Hirzberger, Comparison of solar photospheric bright points between SUNRISE observations and MHD simulations. Astron. Astrophys. (2014). doi:10.1051/0004-6361/201423892

    Google Scholar 

  • D. Röhrbein, R. Cameron, M. Schüssler, Is there a non-monotonic relation between photospheric brightness and magnetic field strength in solar plage regions? Astron. Astrophys. 532, A140 (2011). doi:10.1051/0004-6361/201117090

    Google Scholar 

  • G. Rottman, The SORCE mission. Sol. Phys. 230, 7–25 (2005). doi:10.1007/s11207-005-8112-6

    ADS  Google Scholar 

  • G. Rottman, T. Woods, M. Snow, G. DeToma, The solar cycle variation in ultraviolet irradiance. Adv. Space Res. 27, 1927–1932 (2001). doi:10.1016/S0273-1177(01)00272-1

    ADS  Google Scholar 

  • G.B. Rybicki, D.G. Hummer, An accelerated lambda iteration method for multilevel radiative transfer. I—Non-overlapping lines with background continuum. Astron. Astrophys. 245, 171–181 (1991)

    ADS  Google Scholar 

  • G.B. Rybicki, D.G. Hummer, An accelerated lambda iteration method for multilevel radiative transfer. II—Overlapping transitions with full continuum. Astron. Astrophys. 262, 209–215 (1992)

    ADS  Google Scholar 

  • P.H. Scherrer, R.S. Bogart, R.I. Bush, J.T. Hoeksema, A.G. Kosovichev, J. Schou, W. Rosenberg, L. Springer, T.D. Tarbell, A. Title, C.J. Wolfson, I. Zayer (MDI Engineering Team), The solar oscillations investigation—Michelson Doppler imager. Sol. Phys. 162, 129–188 (1995). doi:10.1007/BF00733429

    ADS  Google Scholar 

  • W. Schmutz, A. Fehlmann, G. Hülsen, P. Meindl, R. Winkler, G. Thuillier, P. Blattner, F. Buisson, T. Egorova, W. Finsterle, N. Fox, J. Gröbner, J. Hochedez, S. Koller, M. Meftah, M. Meisonnier, S. Nyeki, D. Pfiffner, H. Roth, E. Rozanov, M. Spescha, C. Wehrli, L. Werner, J.U. Wyss, The PREMOS/PICARD instrument calibration. Metrologia 46(4), 202 (2009)

    ADS  Google Scholar 

  • W. Schmutz, A. Fehlmann, W. Finsterle, G. Kopp, G. Thuillier, Total solar irradiance measurements with PREMOS/PICARD. AIP Conf. Proc. 1531(1), 624–627 (2013). doi:10.1063/1.4804847

    ADS  Google Scholar 

  • R.S. Schnerr, H.C. Spruit, The brightness of magnetic field concentrations in the quiet Sun. Astron. Astrophys. 532, A136 (2011). doi:10.1051/0004-6361/201015976

    ADS  Google Scholar 

  • J. Schou, P.H. Scherrer, R.I. Bush, R. Wachter, S. Couvidat, M.C. Rabello-Soares, R.S. Bogart, J.T. Hoeksema, Y. Liu, T.L. Duvall, D.J. Akin, B.A. Allard, J.W. Miles, R. Rairden, R.A. Shine, T.D. Tarbell, A.M. Title, C.J. Wolfson, D.F. Elmore, A.A. Norton, S. Tomczyk, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 229–259 (2012). doi:10.1007/s11207-011-9842-2

    ADS  Google Scholar 

  • A.D. Seleznyov, S.K. Solanki, N.A. Krivova, Modelling solar irradiance variability on time scales from minutes to months. Astron. Astrophys. 532, A108 (2011). doi:10.1051/0004-6361/200811138

    ADS  Google Scholar 

  • A.I. Shapiro, W. Schmutz, M. Schoell, M. Haberreiter, E. Rozanov, NLTE solar irradiance modelling with the COSI code. Astron. Astrophys. 517, A48 (2010). doi:10.1051/0004-6361/200913987

    ADS  Google Scholar 

  • A.I. Shapiro, W. Schmutz, E. Rozanov, M. Schoell, M. Haberreiter, A.V. Shapiro, S. Nyeki, A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron. Astrophys. 529, A67 (2011). doi:10.1051/0004-6361/201016173

    ADS  Google Scholar 

  • A.V. Shapiro, A.I. Shapiro, M. Dominique, I.E. Dammasch, C. Wehrli, E. Rozanov, W. Schmutz, Detection of solar rotational variability in the Large Yield RAdiometer (LYRA) 190–222 nm spectral band. Sol. Phys. 286, 289–301 (2013). doi:10.1007/s11207-012-0029-2

    ADS  Google Scholar 

  • J. Skupin, M. Weber, S. Noël, H. Bovensmann, J.P. Burrows, GOME and SCIAMACHY solar measurements: solar spectral irradiance and Mg II solar activity proxy indicator. Mem. Soc. Astron. Ital. 76, 1038 (2005a)

    ADS  Google Scholar 

  • J. Skupin, S. Noël, M.W. Wuttke, M. Gottwald, H. Bovensmann, M. Weber, J.P. Burrows, SCIAMACHY solar irradiance observation in the spectral range from 240 to 2380 nm. Adv. Space Res. 35, 370–375 (2005b). doi:10.1016/j.asr.2005.03.036

    ADS  Google Scholar 

  • J. Skupin, M. Weber, H. Bovensmann, J.P. Burrows, The Mg II solar activity proxy indicator derived from GOME and SCIAMACHY, in Proceedings of the 2004 Envisat & ERS Symposium. ESA Sp. Pub., vol. 572 (2005c)

    Google Scholar 

  • E.V.P. Smith, D.M. Gottlieb, Solar flux and its variations. NASA Spec. Publ. 366, 97–117 (1975)

    ADS  Google Scholar 

  • M. Snow, W.E. McClintock, G. Rottman, T.N. Woods, Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): examination of the solar stellar comparison technique. Sol. Phys. 230, 295–324 (2005a). doi:10.1007/s11207-005-8763-3

    ADS  Google Scholar 

  • M. Snow, W.E. McClintock, T.N. Woods, O.R. White, J.W. Harder, G. Rottman, The Mg II Index from SORCE. Sol. Phys. 230, 325–344 (2005b). doi:10.1007/s11207-005-6879-0

    ADS  Google Scholar 

  • H. Socas-Navarro, A high-resolution three-dimensional model of the solar photosphere derived from Hinode observations. Astron. Astrophys. 529, A37 (2011). doi:10.1051/0004-6361/201015805

    ADS  Google Scholar 

  • S.K. Solanki, Smallscale solar magnetic fields—an overview. Space Sci. Rev. 63, 1–188 (1993). doi:10.1007/BF00749277

    ADS  Google Scholar 

  • S.K. Solanki, Sunspots: an overview. Astron. Astrophys. Rev. 11, 153–286 (2003). doi:10.1007/s00159-003-0018-4

    ADS  Google Scholar 

  • S.K. Solanki, N.A. Krivova, Solar irradiance variations: from current measurements to long-term estimates. Sol. Phys. 224, 197–208 (2004). doi:10.1007/s11207-005-6499-8

    ADS  Google Scholar 

  • S.K. Solanki, Y.C. Unruh, A model of the wavelength dependence of solar irradiance variations. Astron. Astrophys. 329, 747–753 (1998)

    ADS  Google Scholar 

  • S.K. Solanki, B. Inhester, M. Schüssler, The solar magnetic field. Rep. Prog. Phys. 69, 563–668 (2006). doi:10.1088/0034-4885/69/3/R02

    ADS  Google Scholar 

  • S.K. Solanki, N.A. Krivova, J.D. Haigh, Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys. 51, 311–351 (2013). doi:10.1146/annurev-astro-082812-141007

    ADS  Google Scholar 

  • S.K. Solanki, M. Schüssler, M. Fligge, Secular variation of the Sun’s magnetic flux. Astron. Astrophys. 383, 706–712 (2002). doi:10.1051/0004-6361:20011790

    ADS  Google Scholar 

  • S.K. Solanki, O. Steiner, M. Bünte, G. Murphy, S.R.O. Ploner, On the reliability of Stokes diagnostics of magnetic elements away from solar disc centre. Astron. Astrophys. 333, 721–731 (1998)

    ADS  Google Scholar 

  • S.K. Solanki, P. Barthol, S. Danilovic, A. Feller, A. Gandorfer, J. Hirzberger, T.L. Riethmüller, M. Schüssler, J.A. Bonet, V. Martínez Pillet, J.C. del Toro Iniesta, V. Domingo, J. Palacios, M. Knölker, N. Bello González, T. Berkefeld, M. Franz, W. Schmidt, A.M. Title, SUNRISE: Instrument, mission, data, and first results. Astrophys. J. Lett. 723, 127–133 (2010). doi:10.1088/2041-8205/723/2/L127

    ADS  Google Scholar 

  • H.C. Spruit, Pressure equilibrium and energy balance of small photospheric fluxtubes. Sol. Phys. 50, 269–295 (1976). doi:10.1007/BF00155292

    ADS  Google Scholar 

  • H.C. Spruit, B. Roberts, Magnetic flux tubes on the sun. Nature 304, 401–406 (1983). doi:10.1038/304401a0

    ADS  Google Scholar 

  • H.C. Spruit, C. Zwaan, The size dependence of contrasts and numbers of small magnetic flux tubes in an active region. Sol. Phys. 70, 207–228 (1981). doi:10.1007/BF00151329

    ADS  Google Scholar 

  • O. Steiner, Radiative properties of magnetic elements. II. Center to limb variation of the appearance of photospheric faculae. Astron. Astrophys. 430, 691–700 (2005). doi:10.1051/0004-6361:20041286

    ADS  Google Scholar 

  • K.F. Tapping, Recent solar radio astronomy at centimeter wavelengths—the temporal variability of the 10.7-cm flux. J. Geophys. Res. 92, 829–838 (1987). doi:10.1029/JD092iD01p00829

    ADS  Google Scholar 

  • K.F. Tapping, The 10.7 cm solar radio flux (F10.7). Adv. Space Res. 11(7), 394–406 (2013). doi:10.1002/swe.20064

    Google Scholar 

  • G. Thuillier, T. Foujols, D. Bolsée, D. Gillotay, M. Hersé, W. Peetermans, W. Decuyper, H. Mandel, P. Sperfeld, S. Pape, D.R. Taubert, J. Hartmann, SOLAR/SOLSPEC: scientific objectives, instrument performance and its absolute calibration using a blackbody as primary standard source. Sol. Phys. 257, 185–213 (2009). doi:10.1007/s11207-009-9361-6

    ADS  Google Scholar 

  • G. Thuillier, M. Deland, A. Shapiro, W. Schmutz, D. Bolsée, S.M.L. Melo, The solar spectral irradiance as a function of the Mg II index for atmosphere and climate modelling. Sol. Phys. 277, 245–266 (2012). doi:10.1007/s11207-011-9912-5

    ADS  Google Scholar 

  • G. Thuillier, D. Bolsée, G. Schmidtke, T. Foujols, B. Nikutowski, A.I. Shapiro, R. Brunner, M. Weber, C. Erhardt, M. Hersé, D. Gillotay, W. Peetermans, W. Decuyper, N. Pereira, M. Haberreiter, H. Mandel, W. Schmutz, The solar irradiance spectrum at solar activity minimum between solar cycles 23 and 24. Sol. Phys. 289, 1931–1958 (2014a). doi:10.1007/s11207-013-0461-y

    ADS  Google Scholar 

  • G. Thuillier, G. Schmidtke, C. Erhardt, B. Nikutowski, A.I. Shapiro, C. Bolduc, J. Lean, N.A. Krivova, P. Charbonneau, G. Cessateur, M. Haberreiter, S. Melo, V. Delouille, B. Mampaey, K.L. Yeo, W. Schmutz, Solar spectral irradiance variability in November/December 2012: comparison of observations by instruments on the International Space Station and models. Sol. Phys. (2014b, submitted)

    Google Scholar 

  • K.P. Topka, T.D. Tarbell, A.M. Title, Properties of the smallest solar magnetic elements. II. Observations versus hot wall models of faculae. Astrophys. J. 484, 479 (1997). doi:10.1086/304295

    ADS  Google Scholar 

  • H. Uitenbroek, The effect of coherent scattering on radiative losses in the solar Ca II K line. Astrophys. J. 565, 1312–1322 (2002). doi:10.1086/324698

    ADS  Google Scholar 

  • H. Uitenbroek, S. Criscuoli, Why one-dimensional models fail in the diagnosis of average spectra from inhomogeneous stellar atmospheres. Astrophys. J. 736, 69 (2011). doi:10.1088/0004-637X/736/1/69

    ADS  Google Scholar 

  • Y.C. Unruh, W.T. Ball, N.A. Krivova, Solar irradiance models and measurements: a comparison in the 220–240 nm wavelength band. Surv. Geophys. 33, 475–481 (2012). doi:10.1007/s10712-011-9166-7

    ADS  Google Scholar 

  • Y.C. Unruh, S.K. Solanki, M. Fligge, The spectral dependence of facular contrast and solar irradiance variations. Astron. Astrophys. 345, 635–642 (1999)

    ADS  Google Scholar 

  • Y.C. Unruh, N.A. Krivova, S.K. Solanki, J.W. Harder, G. Kopp, Spectral irradiance variations: comparison between observations and the SATIRE model on solar rotation time scales. Astron. Astrophys. 486, 311–323 (2008). doi:10.1051/0004-6361:20078421

    ADS  Google Scholar 

  • Y.C. Unruh, S.K. Solanki, M. Schüssler, A. Vögler, D. Garcia-Alvarez, Towards long-term solar irradiance modelling: network contrasts from magneto-convection simulations, in 15th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, ed. by E. Stempels. AIP Conf. Proc., vol. 1094 (2009), pp. 768–771. doi:10.1063/1.3099228

    Google Scholar 

  • R.A. Viereck, L.C. Puga, The NOAA Mg II core-to-wing solar index: construction of a 20-year time series of chromospheric variability from multiple satellites. J. Geophys. Res. 104, 9995–10006 (1999). doi:10.1029/1998JA900163

    ADS  Google Scholar 

  • R.A. Viereck, L.E. Floyd, P.C. Crane, T.N. Woods, B.G. Knapp, G. Rottman, M. Weber, L.C. Puga, M.T. Deland, A composite Mg II index spanning from 1978 to 2003. Adv. Space Res. 2, 10005 (2004). doi:10.1029/2004SW000084

    Google Scholar 

  • A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, T. Linde, Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335–351 (2005). doi:10.1051/0004-6361:20041507

    ADS  Google Scholar 

  • M. Weber, J.P. Burrows, R.P. Cebula, GOME solar UV/VIS irradiance measurements between 1995 and 1997—first results on proxy solar activity studies. Sol. Phys. 177, 63–77 (1998). doi:10.1023/A:1005030909779

    ADS  Google Scholar 

  • S. Wedemeyer-Böhm, Point spread functions for the Solar optical telescope onboard Hinode. Astron. Astrophys. 487, 399–412 (2008). doi:10.1051/0004-6361:200809819

    ADS  Google Scholar 

  • C. Wehrli, W. Schmutz, A.I. Shapiro, Correlation of spectral solar irradiance with solar activity as measured by VIRGO. Astron. Astrophys. 556, L3 (2013). doi:10.1051/0004-6361/201220864

    ADS  Google Scholar 

  • T. Wenzler, Reconstruction of solar irradiance variations in cycles 21–23 based on surface magnetic fields. Ph.D. Thesis (University of Göttingen, 2005)

    Google Scholar 

  • T. Wenzler, S.K. Solanki, N.A. Krivova, Reconstructed and measured total solar irradiance: is there a secular trend between 1978 and 2003? Geophys. Res. Lett. 36, 11102 (2009). doi:10.1029/2009GL037519

    ADS  Google Scholar 

  • T. Wenzler, S.K. Solanki, N.A. Krivova, C. Fröhlich, Reconstruction of solar irradiance variations in cycles 21–23 based on surface magnetic fields. Astron. Astrophys. 460, 583–595 (2006). doi:10.1051/0004-6361:20065752

    ADS  Google Scholar 

  • R.C. Willson, Active cavity radiometer type IV. Appl. Opt. 18, 179–188 (1979). doi:10.1364/AO.18.000179

    ADS  Google Scholar 

  • R.C. Willson, H.S. Hudson, Solar luminosity variations in solar cycle 21. Nature 332, 810–812 (1988). doi:10.1038/332810a0

    ADS  Google Scholar 

  • R.C. Willson, A.V. Mordvinov, Secular total solar irradiance trend during solar cycles 21–23. Geophys. Res. Lett. 30, 1199 (2003). doi:10.1029/2002GL016038

    ADS  Google Scholar 

  • R.C. Willson, S. Gulkis, M. Janssen, H.S. Hudson, G.A. Chapman, Observations of solar irradiance variability. Science 211, 700–702 (1981). doi:10.1126/science.211.4483.700

    ADS  Google Scholar 

  • C.L. Wolff, J.R. Hickey, Solar irradiance change and special longitudes due to r-modes. Science 235, 1631–1633 (1987). doi:10.1126/science.235.4796.1631

    ADS  Google Scholar 

  • T.N. Woods, Recent advances in observations and modelling of the solar ultraviolet and X-ray spectral irradiance. Adv. Space Res. 42, 895–902 (2008). doi:10.1016/j.asr.2007.09.026

    ADS  Google Scholar 

  • T.N. Woods, G. Kopp, P.C. Chamberlin, Contributions of the solar ultraviolet irradiance to the total solar irradiance during large flares. J. Geophys. Res. 111(A10), 10 (2006). doi:10.1029/2005JA011507

    Google Scholar 

  • T.N. Woods, W.K. Tobiska, G.J. Rottman, J.R. Worden, Improved solar Lyman α irradiance modelling from 1947 through 1999 based on UARS observations. J. Geophys. Res. 105, 27195–27216 (2000). doi:10.1029/2000JA000051

    ADS  Google Scholar 

  • T.N. Woods, P.C. Chamberlin, J.W. Harder, R.A. Hock, M. Snow, F.G. Eparvier, J. Fontenla, W.E. McClintock, E.C. Richard, Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI). Geophys. Res. Lett. 36, 1101 (2009). doi:10.1029/2008GL036373

    ADS  Google Scholar 

  • K.L. Yeo, S.K. Solanki, N.A. Krivova, Intensity contrast of solar network and faculae. Astron. Astrophys. 550, A95 (2013). doi:10.1051/0004-6361/201220682

    ADS  Google Scholar 

  • K.L. Yeo, A. Feller, S.K. Solanki, S. Couvidat, S. Danilovic, N.A. Krivova, Point spread function of SDO/HMI and the effects of stray light correction on the apparent properties of solar surface phenomena. Astron. Astrophys. 561, A22 (2014a). doi:10.1051/0004-6361/201322502

    ADS  Google Scholar 

  • K.L. Yeo, N.A. Krivova, S.K. Solanki, K.H. Glassmeier, Reconstruction of total and spectral solar irradiance since 1974 based on KPVT, SoHO/MDI and SDO/HMI observations. Astron. Astrophys. (2014b, submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Yeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yeo, K.L., Krivova, N.A., Solanki, S.K. (2015). Solar Cycle Variation in Solar Irradiance. In: Balogh, A., Hudson, H., Petrovay, K., von Steiger, R. (eds) The Solar Activity Cycle. Space Sciences Series of ISSI, vol 53. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2584-1_5

Download citation

Publish with us

Policies and ethics