Skip to main content

Advertisement

Log in

Detailed Analysis of Solar Data Related to Historical Extreme Geomagnetic Storms: 1868 – 2010

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

An analysis of historical Sun–Earth connection events in the context of the most extreme space weather events of the last \(\sim150\) years is presented. To identify the key factors leading to these extreme events, a sample of the most important geomagnetic storms was selected based mainly on the well-known aa index and on geomagnetic parameters described in the accompanying paper (Vennerstrøm et al., Solar Phys. in this issue, 2016, hereafter Paper I). This part of the analysis focuses on associating and characterizing the active regions (sunspot groups) that are most likely linked to these major geomagnetic storms.

For this purpose, we used detailed sunspot catalogs as well as solar images and drawings from 1868 to 2010. We have systematically collected the most pertinent sunspot parameters back to 1868, gathering and digitizing solar drawings from different sources such as the Greenwich archives, and extracting the missing sunspot parameters. We present a detailed statistical analysis of the active region parameters (sunspots, flares) relative to the geomagnetic parameters developed in Paper I.

In accordance with previous studies, but focusing on a much larger statistical sample, we find that the level of the geomagnetic storm is highly correlated to the size of the active regions at the time of the flare and correlated with the size of the flare itself. We also show that the origin at the Sun is most often a complex active region that is also most of the time close to the central meridian when the event is identified at the Sun. Because we are dealing with extremely severe storms, and not the usual severe storm sample, there is also a strong correlation between the size of the linked active region, the estimated transit speed, and the level of the geomagnetic event. In addition, we confirm that the geomagnetic events studied here and the associated events at the Sun present a low probability of occurring at low sunspot number value and are associated mainly with the maximum and descending part of the solar cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33

Similar content being viewed by others

References

  • Akasofu, S.-I., Yoshida, S.: 1967, The structure of the solar plasma flow generated by solar flares. Planet. Space Sci. 15, 39. DOI . ADS .

    Article  ADS  Google Scholar 

  • Arcimis, A.T.: 1901, Astronomia Popular – Tome I, Montaner y Simón Editores, Barcelona.

    Google Scholar 

  • Arlt, R., Fröhlich, H.-E.: 2012, The solar differential rotation in the 18th century. Astron. Astrophys. 543, A7. DOI . ADS .

    Article  ADS  Google Scholar 

  • Athens, O.: 1871, Beobachtungen der Sonne im Jahre 1870 auf der Sternwarte zu Athen. Astron. Nachr. 77, 145. ADS .

    Article  Google Scholar 

  • Aulanier, G., Démoulin, P., Schrijver, C.J., Janvier, M., Pariat, E., Schmieder, B.: 2013, The standard flare model in three dimensions, II: upper limit on solar flare energy. Astron. Astrophys. 549, A66. DOI . ADS .

    Article  ADS  Google Scholar 

  • Balthasar, H., Lustig, G., Woehl, H., Stark, D.: 1986, The solar rotation elements i and omega derived from sunspot groups. Astron. Astrophys. 160, 277. ADS .

    ADS  Google Scholar 

  • Bouwer, S.D., Donnelly, J., Falcon, J., Quintana, A., Caldwel, G.: 1982, A summary of solar 1 – 8 A measurements from the SMS and GOES satellites, 1977 – 1981. NASA STI/Recon Technical Report N 83, 23263. ADS .

    ADS  Google Scholar 

  • Cane, H.V.: 1985, The evolution of interplanetary shocks. J. Geophys. Res. 90, 191. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cane, H.V., Kahler, S.W., Sheeley, N.R. Jr.: 1986, Interplanetary shocks preceded by solar filament eruptions. J. Geophys. Res. 91, 13321. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., St. Cyr, O.C.: 2000, Coronal mass ejections, interplanetary ejecta and geomagnetic storms. Geophys. Res. Lett. 27, 3591. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., Wibberenz, G.: 1996, Energetic particles and solar wind disturbances. In: Winterhalter, D., Gosling, J.T., Habbal, S.R., Kurth, W.S., Neugebauer, M. (eds.) Am. Inst. Phys. Conf. Ser. 382, 449. DOI . ADS .

    Google Scholar 

  • Carrasco, V.M.S., Vaquero, J.M., Gallego, M.C., Trigo, R.M.: 2013, Forty two years counting spots: solar observations by D.E. Hadden during 1890 – 1931 revisited. New Astron. 25, 95. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chatfield, C., Collins, A.J.: 1980, Introduction to Multivariate Analysis Springer, New York. DOI .

    Book  MATH  Google Scholar 

  • Cliver, E.W.: 1995, Solar flare nomenclature. Solar Phys. 157, 285. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cliver, E.W., Crooker, N.U.: 1993, A seasonal dependence for the geoeffectiveness of eruptive solar events. Solar Phys. 145, 347. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cliver, E.W., Feynman, J., Garrett, H.B.: 1990, An estimate of the maximum speed of the solar wind, 1938 – 1989. J. Geophys. Res. 95, 17103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cliver, E.W., Balasubramaniam, K.S., Nitta, N.V., Li, X.: 2009, Great geomagnetic storm of 9 November 1991: association with a disappearing solar filament. J. Geophys. Res. 114, A00. DOI . ADS .

    Article  Google Scholar 

  • Colak, T., Qahwaji, R.: 2009, Automated solar activity prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather 7, 6001. DOI . ADS .

    Article  ADS  Google Scholar 

  • Crooker, N.U., Siscoe, G.L., Shodhan, S., Webb, D.F., Gosling, J.T., Smith, E.J.: 1993, Multiple heliospheric current sheets and coronal streamer belt dynamics. J. Geophys. Res. 98, 9371. DOI . ADS .

    Article  ADS  Google Scholar 

  • Crosby, N., Heynderickx, D., Jiggens, P., Aran, A., Sanahuja, B., Truscott, P., Lei, F., Jacobs, C., Poedts, S., Gabriel, S., Sandberg, I., Glover, A., Hilgers, A.: 2015, SEPEM: a tool for statistical modeling the solar energetic particle environment. Space Weather 13, 406. DOI . ADS .

    Article  ADS  Google Scholar 

  • Denning, W.F.: 1873, Observations of solar spots – October 14th to November 15th, 1872. Astron. Reg. 11, 73.

    Google Scholar 

  • Dierckxsens, M., Tziotziou, K., Dalla, S., Patsou, I., Marsh, M.S., Crosby, N.B., Malandraki, O., Tsiropoula, G.: 2015, Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of solar cycle 23 events. Solar Phys. 290, 841. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dodson, H.W., Hedeman, E.R.: 1964, Problems of differentiation of flares with respect to geophysical effects. Planet. Space Sci. 12, 393. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dodson, H.W., Hedeman, E.R., Mohler, O.C.: 1979, Examples of problem flares or situations in past solar–terrestrial observations. In: Donnelly, R.F. (ed.) NOAA Solar–Terrestrial Predictions Proc., Solar–Terrestrial Physics 1, 385. ADS .

    Google Scholar 

  • Drake, S.A., Gurman, J.B.: 1989, The SMM UV observations of active region 5395. In: Winglee, R.M., Dennis, B.R. (eds.) Developments in Observations and Theory for Solar Cycle 22, 248. ADS .

    Google Scholar 

  • Dumbović, M., Vršnak, B., Čalogović, J., Karlica, M.: 2011, Cosmic ray modulation by solar wind disturbances. Astron. Astrophys. 531, A91. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dumbović, M., Devos, A., Vršnak, B., Sudar, D., Rodriguez, L., Ruždjak, D., Leer, K., Vennerstrøm, S., Veronig, A.: 2015, Geoeffectiveness of coronal mass ejections in the SOHO era. Solar Phys. 290, 579. DOI . ADS .

    Article  ADS  Google Scholar 

  • Erwin, E.H., Coffey, H.E., Denig, W.F., Willis, D.M., Henwood, R., Wild, M.N.: 2013, The Greenwich photo-heliographic results (1874 – 1976): initial corrections to the printed publications. Solar Phys. 288, 157. DOI . ADS .

    Article  ADS  Google Scholar 

  • Feynman, J.: 1980, Implications of solar cycles 19 and 20 geomagnetic activity for magnetospheric processes. Geophys. Res. Lett. 7, 971. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fritzová-Švestková, L., Švestka, Z.: 1966, Type IV bursts, II: in association with PCA events. Bull. Astron. Inst. Czechoslov. 17, 249. ADS .

    ADS  Google Scholar 

  • Garcia, H.A., Dryer, M.: 1987, The solar flares of February 1986 and the ensuing intense geomagnetic storm. Solar Phys. 109, 119. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Tsurutani, B.T., McIntosh, P.S., Clúa de Gonzalez, A.L.: 1996, Coronal hole-active region-current sheet (CHARCS) association with intense interplanetary and geomagnetic activity. Geophys. Res. Lett. 23, 2577. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2001, Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1993, Coronal mass ejections – the link between solar and geomagnetic activity. Phys. Fluids, B Plasma Phys. 5, 2638. DOI . ADS .

    Article  Google Scholar 

  • Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J.L.: 1990, Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett. 17, 901. DOI . ADS .

    Article  ADS  Google Scholar 

  • Győri, L.: 1998, Automation of area measurement of sunspots. Solar Phys. 180, 109. ADS .

    Article  ADS  Google Scholar 

  • Győri, L., Baranyi, T., Ludmány, A.: 2011, Photospheric data programs at the Debrecen Observatory. In: IAU Symposium, 273, 403. DOI . ADS .

    Google Scholar 

  • Győri, L., Baranyi, T., Muraközy, J., Ludmány, A.: 2005, Recent advances in the Debrecen sunspot catalogues. Mem. Soc. Astron. Ital. 76, 981. ADS .

    ADS  Google Scholar 

  • Hale, G.E.: 1929, No. 388. The spectroscope and its work. Part I. History, instruments, adjustments, and methods of observation. Contributions from the Mount Wilson Observatory/Carnegie Institution of Washington 388, 1. ADS .

    ADS  Google Scholar 

  • Hale, G.E.: 1931, The spectrohelioscope and its work. Part III. Solar eruptions and their apparent terrestrial effects. Astrophys. J. 73, 379. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, R.F.: 1992, The growth and decay of sunspot groups. Solar Phys. 137, 51. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, R.F.: 1993, How growth and decay of sunspot groups depend on axial tilt angles. Solar Phys. 145, 95. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, R.A.: 2006, A historical perspective on coronal mass ejections. In: Gopalwamy, N., Mewaldt, R., Torsti, J. (eds.) Solar Eruptions and Energetic Particles. AGU, Geophys. Mon. Ser. 165, 7. ADS .

    Chapter  Google Scholar 

  • Howard, T.A., Tappin, S.J.: 2005, Statistical survey of earthbound interplanetary shocks, associated coronal mass ejections and their space weather consequences. Astron. Astrophys. 440, 373. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: 1998, Group sunspot numbers: a new solar activity reconstruction. Solar Phys. 181, 491. ADS .

    Article  ADS  Google Scholar 

  • Hudson, H.S.: 1991, Solar flares, microflares, nanoflares, and coronal heating. Solar Phys. 133, 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Joselyn, J.A., McIntosh, P.S.: 1981, Disappearing solar filaments – a useful predictor of geomagnetic activity. J. Geophys. Res. 86, 4555. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kahler, S.W.: 1982, The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters. J. Geophys. Res. 87, 3439. DOI . ADS .

    Article  ADS  Google Scholar 

  • Koskinen, H.E.J., Huttunen, K.E.J.: 2006, Geoeffectivity of coronal mass ejections. Space Sci. Rev. 124, 169. DOI . ADS .

    Article  ADS  Google Scholar 

  • Krivský, L.: 1973, Trends of development of the proton active region of 24 January 1971. Bull. Astron. Inst. Czechoslov. 24, 96. ADS .

    ADS  Google Scholar 

  • Lefèvre, L., Clette, F.: 2011, A global small sunspot deficit at the base of the index anomalies of solar cycle 23. Astron. Astrophys. 536, L11. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lefèvre, L., Clette, F.: 2014, Survey and merging of sunspot catalogs. Solar Phys. 289, 545. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lundstedt, H., Persson, T., Andersson, V.: 2015, The extreme solar storm of May 1921: observations and a complex topological model. Ann. Geophys. 33, 109. DOI .

    Article  ADS  Google Scholar 

  • Maričić, D., Vršnak, B., Stanger, A.L., Veronig, A.M., Temmer, M., Roša, D.: 2007, Acceleration phase of coronal mass ejections, II: synchronization of the energy release in the associated flare. Solar Phys. 241, 99. DOI . ADS .

    Article  ADS  Google Scholar 

  • Maunder, E.W.: 1904, Greenwich, Royal Observatory, the “great” magnetic storms, 1875 to 1903, and their association with sun-spots. Mon. Not. Roy. Astron. Soc. 64, 205. ADS .

    Article  ADS  Google Scholar 

  • Mayaud, P.N.: 1980, Derivation, meaning and use of geomagnetic indices. AGU 22, 538. DOI .

    Google Scholar 

  • McAllister, A.H., Dryer, M., McIntosh, P., Singer, H., Weiss, L.: 1996, A large polar crown coronal mass ejection and a “problem” geomagnetic storm: April 14 – 23, 1994. J. Geophys. Res. 101, 13497. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, P.S.: 1990, The classification of sunspot groups. Solar Phys. 125, 251. DOI . ADS .

    Article  ADS  Google Scholar 

  • Menvielle, M., Marchaudon, A.: 2007, Geomagnetic indices in solar–terrestrial physics and space weather. In: Lilensten, J. (ed.) Space Weather: Research Towards Applications in Europe 2nd European Space Weather Week (ESWW2), Astrophys. Space Sci. Library 344, 277. DOI . ADS .

    Chapter  Google Scholar 

  • Moon, Y.-J., Choe, G.S., Wang, H., Park, Y.D., Cheng, C.Z.: 2003, Relationship between CME kinematics and flare strength. J. Korean Astron. Soc. 36, 61. ADS .

    Article  ADS  Google Scholar 

  • Neidig, D.F., Cliver, E.W.: 1983, A catalog of solar white-light flares, including their statistical properties and associated emissions, 1859 – 1982. NASA STI/Recon Technical Report N 84, 24521. ADS .

    ADS  Google Scholar 

  • Newton, H.W.: 1943, Solar flares and magnetic storms. Mon. Not. Roy. Astron. Soc. 103, 244. ADS .

    Article  ADS  Google Scholar 

  • Newton, H.W.: 1944, Solar flares and magnetic storms (second paper). Mon. Not. Roy. Astron. Soc. 104, 4. ADS .

    Article  ADS  Google Scholar 

  • Newton, H.W.: 1950, A significant time-distribution of great solar flares and great geomagnetic storms. Observatory 70, 233. ADS .

    ADS  Google Scholar 

  • Pearson, K.: 1895, Notes on regression and inheritance in the case of two parents. Proc. Roy. Soc. London 58, 500. DOI . ADS .

    Google Scholar 

  • Priest, E.R., Forbes, T.G.: 2002, The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313. DOI . ADS .

    Article  ADS  Google Scholar 

  • Proctor, R.A.: 1871, The Sun: Ruler, Fire, Light, and Life of the Planetary System, Longman & Green, London.

    Google Scholar 

  • Qahwaji, R., Colak, T.: 2007, Automatic short-term solar flare prediction using machine learning and sunspot associations. Solar Phys. 241, 195. DOI . ADS .

    Article  ADS  Google Scholar 

  • Qahwaji, R., Colak, T., Al-Omari, M., Ipson, S.: 2008, Automated prediction of CMEs using machine learning of CME – flare associations. Solar Phys. 248, 471. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reames, D.V.: 1999, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413. DOI . ADS .

    Article  ADS  Google Scholar 

  • Richardson, R.S.: 1944, Solar flares versus bright chromospheric eruptions: a question of terminology. Publ. Astron. Soc. Pac. 56, 156. DOI . ADS .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ruždjak, V., Vršnak, B., Brajša, R., Schroll, A.: 1989, A comparison of H-alpha and soft X-ray characteristics of spotless and SPOT group flares. Solar Phys. 123, 309. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sakurai, K.: 1970, On the magnetic configuration of sunspot groups which produce solar proton flares. Planet. Space Sci. 18, 33. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sammis, I., Tang, F., Zirin, H.: 2000, The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J. 540, 583. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Beer, J., Baltensperger, U., Cliver, E.W., Güdel, M., Hudson, H.S., McCracken, K.G., Osten, R.A., Peter, T., Soderblom, D.R., Usoskin, I.G., Wolff, E.W.: 2012, Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. J. Geophys. Res. 117, 8103. DOI . ADS .

    Article  Google Scholar 

  • Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23, 1033. DOI . ADS .

    Article  ADS  Google Scholar 

  • Secchi, P.: 1872, Sur les taches et le diametre solaires. C. R. Acad. Sci., Paris 75, 1581.

    Google Scholar 

  • Secchi, P.: 1879, El Sol, Madrid Administracion de la Biblioteca Cientifico-Literaria, Libreria de Victoriano Suarez, Sevilla.

    Google Scholar 

  • Silverman, S.M., Cliver, E.W.: 2001, Low-latitude auroras: the magnetic storm of 14 – 15 May 1921. J. Atmos. Solar-Terr. Phys. 63, 523. DOI . ADS .

    Article  ADS  Google Scholar 

  • Simnett, G.M., Harrison, R.A.: 1985, The onset of coronal mass ejections. Solar Phys. 99, 291. DOI . ADS .

    Article  ADS  Google Scholar 

  • Spearman, C.: 1904, The proof and measurement of association between two things. Am. J. Psychol. 15(15), 500. DOI . ADS .

    Google Scholar 

  • Spoerer, G.: 1876, Beobachtungen der Sonnenflecken – Part II, Der Astronomisches Gesellschaft, Leipzig.

    Google Scholar 

  • Srivastava, N., Venkatakrishnan, P.: 2002, Relationship between CME speed and geomagnetic storm intensity. Geophys. Res. Lett. 29, 1287. DOI . ADS .

    ADS  Google Scholar 

  • Srivastava, N., Venkatakrishnan, P.: 2004, Solar and interplanetary sources of major geomagnetic storms during 1996-2002. J. Geophys. Res. 109(A18), 10103. DOI . ADS .

    Article  Google Scholar 

  • Srivastava, N., Gonzalez, W.D., Gonzalez, A.L.C., Masuda, S.: 1997, On the characteristics of solar origins of geoeffective CMEs observed during August 1992 – April 1993. In: Wilson, A. (ed.) Correlated Phenomena at the Sun, in the Heliosphere and in Geospace, ESA SP 415, 443. ADS .

    Google Scholar 

  • Srivastava, N., Gonzalez, W.D., Gonzalez, A.L.C., Masuda, S.: 1998, On the solar origins of intense geomagnetic storms observed during 6 – 11 March 1993. Solar Phys. 183, 419. DOI . ADS .

    Article  ADS  Google Scholar 

  • Švestka, Z.: 1966, Proton flares before 1956. Bull. Astron. Inst. Czechoslov. 17, 262. ADS .

    ADS  Google Scholar 

  • Švestka, Z.: 1969, The optical flare. In: de Jager, C., Svestka, Z. (eds.) Solar Flares and Space Research, North-Holland, Amsterdam, 16. ADS .

    Google Scholar 

  • Ternullo, M., Contarino, L., Romano, P., Zuccarello, F.: 2002, A statistical analysis on sunspot-groups correlated to M and X flares. In: Wilson, A. (ed.) Solar Variability: From Core to Outer Frontiers, ESA SP 506, 1045. ADS .

    Google Scholar 

  • Tousey, R., Bartoe, J.D.F., Bohlin, J.D., Brueckner, G.E., Purcell, J.D., Scherrer, V.E., Sheeley, N.R. Jr., Schumacher, R.J., Vanhoosier, M.E.: 1973, A Preliminary study of the extreme ultraviolet spectroheliograms from skylab. Solar Phys. 33, 265. DOI . ADS .

    ADS  Google Scholar 

  • Vaquero, J.M., Valente, M.A., Trigo, R.M., Ribeiro, P., Gallego, M.C.: 2008, The 1870 space weather event: geomagnetic and auroral records. J. Geophys. Res. 113, 8230. DOI . ADS .

    Article  Google Scholar 

  • Vaquero, J.M., Trigo, R.M., Gallego, M.C., Dominguez-Castro, F.: 2012, Improving sunspot records: solar drawings of the late 19th century from the Royal Astronomical Observatory of Lisbon. Observatory 132, 376. ADS .

    ADS  Google Scholar 

  • Vennerstrøm, S., Lefevre, L., Dumbovic, M., Crosby, N., Malandraki, O., Patsou, I., Clette, F., Veronig, A., Vrsnak, B., Leer, K., Moretto, T.: 2016, Extreme geomagnetic storms – 1868 – 2010. Solar Phys. DOI .

    Google Scholar 

  • Vršnak, B., Sudar, D., Ruždjak, D.: 2005, The CME-flare relationship: are there really two types of CMEs? Astron. Astrophys. 435, 1149. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wagner, W.J., Hildner, E., House, L.L., Sawyer, C., Sheridan, K.V., Dulk, G.A.: 1981, Radio and visible light observations of matter ejected from the sun. Astrophys. J. Lett. 244, L123. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.M., Ye, P.Z., Wang, S., Zhou, G.P., Wang, J.X.: 2002, A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000. J. Geophys. Res. 107, 1340. DOI . ADS .

    Article  Google Scholar 

  • Willis, D.M., Coffey, H.E., Henwood, R., Erwin, E.H., Hoyt, D.V., Wild, M.N., Denig, W.F.: 2013b, The Greenwich photo-heliographic results (1874 – 1976): summary of the observations, applications, datasets, definitions and errors. Solar Phys. 288, 117. DOI . ADS .

    Article  ADS  Google Scholar 

  • Willis, D.M., Henwood, R., Wild, M.N., Coffey, H.E., Denig, W.F., Erwin, E.H., Hoyt, D.V.: 2013a, The Greenwich photo-heliographic results (1874 – 1976): procedures for checking and correcting the sunspot digital datasets. Solar Phys. 288, 141. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yashiro, S., Akiyama, S., Gopalswamy, N., Howard, R.A.: 2006, Different power-law indices in the frequency distributions of flares with and without coronal mass ejections. Astrophys. J. Lett. 650, L143. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., White, S.M.: 2001, On the temporal relationship between coronal mass ejections and flares. Astrophys. J. 559, 452. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Bothmer, V.: 2003, Identification of solar sources of major geomagnetic storms between 1996 and 2000. Astrophys. J. 582, 520. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mathrm{Dst} \le -100~\mbox{nT}\)) during 1996 – 2005. J. Geophys. Res. 112(A11), 10102. DOI . ADS .

    Google Scholar 

  • Zirin, H., Liggett, M.A.: 1987, Delta spots and great flares. Solar Phys. 113, 267. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been conducted in the frame of the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 263252 (COMESEP). We also acknowledge the support from the Belgian Solar–Terrestrial Center of Excellence (STCE) funded through the Belgian Science Policy Office (BELSPO). L.L. would like to thank O. Lemaître (Royal Observatory of Belgium) for measuring solar data on drawings for this work, and J.M. Vaquero (Universidad de Extremadura, Spain) for his invaluable help with the historical data. M.D., D.S. and B.V. acknowledge financial support by Croatian Science Foundation under the project 6212 “Solar and Stellar Variability”. The Mt. Wilson 150-Foot Solar Tower has been operated by UCLA since 1985, with funding from NASA, ONR and NSF, under agreement with the Mt. Wilson Institute. Prior to 1985 the program was operated by the Hale Observatories with support by the Carnegie Institute of Washington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure Lefèvre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lefèvre, L., Vennerstrøm, S., Dumbović, M. et al. Detailed Analysis of Solar Data Related to Historical Extreme Geomagnetic Storms: 1868 – 2010. Sol Phys 291, 1483–1531 (2016). https://doi.org/10.1007/s11207-016-0892-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-0892-3

Keywords

Navigation