Skip to main content
Log in

Forbush Decrease Prediction Based on Remote Solar Observations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We employ remote observations of coronal mass ejections (CMEs) and the associated solar flares to forecast the CME-related Forbush decreases, i.e. short-term depressions in the galactic cosmic-ray flux. The relation between the Forbush effect at Earth and remote observations of CMEs and associated solar flares is studied via a statistical analysis. Relations between Forbush decrease magnitude and several CME/flare parameters were found: the initial CME speed, apparent width, source position, associated solar-flare class, and the effect of successive-CME occurrence. Based on the statistical analysis, remote solar observations are employed to forecast a Forbush-decrease. For this purpose, an empirical probabilistic model is constructed that uses selected remote solar observations of the CME and associated solar flare as input and gives the expected Forbush-decrease magnitude range as output. The forecast method is evaluated using several verification measures, indicating that as the forecast tends to be more specific, it is less reliable, which is its main drawback. However, the advantages of the method are that it provides an early prediction and that the input does not necessarily depend on using a spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Belov, A.V.: 2009, Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena. In: Gopalswamy, N., Webb, D.F. (eds.) IAU Symp., Proc. Int. Astron. Union, 257, Cambridge University Press, Cambridge, 439. DOI . ADS .

    Google Scholar 

  • Belov, A., Abunin, A., Abunina, M., Eroshenko, E., Oleneva, V., Yanke, V., Papaioannou, A., Mavromichalaki, H., Gopalswamy, N., Yashiro, S.: 2014, Coronal mass ejections and non-recurrent Forbush decreases. Solar Phys. 289, 3949. DOI . ADS .

    Article  ADS  Google Scholar 

  • Blanco, J.J., Catalán, E., Hidalgo, M.A., Medina, J., García, O., Rodríguez-Pacheco, J.: 2013, Observable effects of interplanetary coronal mass ejections on ground level neutron monitor count rates. Solar Phys. 284, 167. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cane, H.V.: 2000, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93, 55. DOI . ADS .

    ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., Wibberenz, G.: 1995, The response of energetic particles to the presence of ejecta material. In: Iucci, N., Lamanna, E. (eds.) Proceedings of the 24th Int. Cosmic Ray Conf., Rome, 4, 377. ADS .

    Google Scholar 

  • Chertok, I.M., Grechnev, V.V., Belov, A.V., Abunin, A.A.: 2013, Magnetic flux of EUV arcade and dimming regions as a relevant parameter for early diagnostics of solar eruptions – sources of non-recurrent geomagnetic storms and Forbush decreases. Solar Phys. 282, 175. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chilingarian, A., Bostanjyan, N.: 2010, On the relation of the Forbush decreases detected by ASEC monitors during the 23rd solar activity cycle with ICME parameters. Adv. Space Res. 45, 614. DOI . ADS .

    Article  ADS  Google Scholar 

  • Devos, A., Verbeeck, C., Robbrecht, E.: 2014, Verification of space weather forecasting at the Regional Warning Center in Belgium. J. Space Weather Space Clim. 4(27), A29. DOI . ADS .

    ADS  Google Scholar 

  • Dumbović, M., Vršnak, B., Čalogović, J., Karlica, M.: 2011, Cosmic ray modulation by solar wind disturbances. Astron. Astrophys. 531, A91+. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dumbović, M., Vršnak, B., Čalogović, J., Župan, R.: 2012, Cosmic ray modulation by different types of solar wind disturbances. Astron. Astrophys. 538, A28. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dumbović, M., Devos, A., Vršnak, B., Sudar, D., Rodriguez, L., Ruždjak, D., Leer, K., Vennerstrøm, S., Veronig, A.: 2015, Geoeffectiveness of coronal mass ejections in the SOHO era. Solar Phys. 290, 579. DOI . ADS .

    Article  ADS  Google Scholar 

  • Forbush, S.E.: 1937, On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys. Rev. 51(12), 1108. DOI .

    Article  ADS  Google Scholar 

  • Hess, V.F., Demmelmair, A.: 1937, World-wide effect in cosmic ray intensity, as observed during a recent magnetic storm. Nature 140, 316. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, T.A., Harrison, R.A.: 2013, Stealth coronal mass ejections: A perspective. Solar Phys. 285, 269. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jordan, A.P., Spence, H.E., Blake, J.B., Shaul, D.N.A.: 2011, Revisiting two-step Forbush decreases. J. Geophys. Res. 116, 11103. DOI . ADS .

    Article  Google Scholar 

  • Krittinatham, W., Ruffolo, D.: 2009, Drift orbits of energetic particles in an interplanetary magnetic flux rope. Astrophys. J. 704, 831. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kubo, Y., Shimazu, H.: 2010, Effect of finite Larmor radius on cosmic-ray penetration into an interplanetary magnetic flux rope. Astrophys. J. 720, 853. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kumar, A., Badruddin: 2014, Interplanetary coronal mass ejections, associated features, and transient modulation of galactic cosmic rays. Solar Phys. 289, 2177. DOI . ADS .

    Article  ADS  Google Scholar 

  • Le Roux, J.A., Potgieter, M.S.: 1991, The simulation of Forbush decreases with time-dependent cosmic-ray modulation models of varying complexity. Astron. Astrophys. 243, 531. ADS .

    ADS  Google Scholar 

  • Parker, E.N.: 1965, The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 13, 9. DOI . ADS .

    Article  ADS  Google Scholar 

  • Richardson, I.G.: 2004, Energetic particles and corotating interaction regions in the solar wind. Space Sci. Rev. 111, 267. DOI . ADS .

    ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2011, Galactic cosmic ray intensity response to interplanetary coronal mass ejections/magnetic clouds in 1995 – 2009. Solar Phys. 270, 609. DOI . ADS .

    Article  ADS  Google Scholar 

  • Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283. DOI . ADS .

    Article  ADS  Google Scholar 

  • Stirzaker, D.: 2003, Elementary Probability, Cambridge University Press, New York.

    Book  MATH  Google Scholar 

  • Sudar, D., Vršnak, B., Dumbović, M.: 2015, Predicting coronal mass ejection transit time to Earth with neural network. Mon. Not. Roy. Astron. Soc., accepted.

  • Thomas, S.R., Owens, M.J., Lockwood, M., Barnard, L., Scott, C.J.: 2015, Near-Earth cosmic ray decreases associated with remote coronal mass ejections. Astrophys. J. 801, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Uwamahoro, J., McKinnell, L.A., Habarulema, J.B.: 2012, Estimating the geoeffectiveness of halo CMEs from associated solar and IP parameters using neural networks. Ann. Geophys. 30, 963. DOI . ADS .

    Article  ADS  Google Scholar 

  • Valach, F., Revallo, M., Bochníček, J., Hejda, P.: 2009, Solar energetic particle flux enhancement as a predictor of geomagnetic activity in a neural network-based model. Space Weather 7, 4004. DOI . ADS .

    ADS  Google Scholar 

  • Wibberenz, G., Cane, H.V., Richardson, I.G.: 1997, Two-step Forbush decreases in the inner solar system and their relevance for models of transient disturbances. In: Potgieter, M.S., Raubenheimer, C., van der Walt, D.J. (eds.) Proceedings of the 25th Int. Cosmic Ray Conf., Durban, 1, 397. ADS .

    Google Scholar 

  • Wibberenz, G., Le Roux, J.A., Potgieter, M.S., Bieber, J.W.: 1998, Transient effects and disturbed conditions. Space Sci. Rev. 83, 309. ADS .

    ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, 7105. DOI . ADS .

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the Croatian Science Foundation under the project 6212 “Solar and Stellar Variability”. M. Dumbović and J. Čalogović acknowledge the support by the ESF project PoKRet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dumbović.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumbović, M., Vršnak, B. & Čalogović, J. Forbush Decrease Prediction Based on Remote Solar Observations. Sol Phys 291, 285–302 (2016). https://doi.org/10.1007/s11207-015-0819-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0819-4

Keywords

Navigation