Solar Physics

, Volume 275, Issue 1, pp 79–113

Computer Vision for the Solar Dynamics Observatory (SDO)

  • P. C. H. Martens
  • G. D. R. Attrill
  • A. R. Davey
  • A. Engell
  • S. Farid
  • P. C. Grigis
  • J. Kasper
  • K. Korreck
  • S. H. Saar
  • A. Savcheva
  • Y. Su
  • P. Testa
  • M. Wills-Davey
  • P. N. Bernasconi
  • N.-E. Raouafi
  • V. A. Delouille
  • J. F. Hochedez
  • J. W. Cirtain
  • C. E. DeForest
  • R. A. Angryk
  • I. De Moortel
  • T. Wiegelmann
  • M. K. Georgoulis
  • R. T. J. McAteer
  • R. P. Timmons
Open AccessThe Solar Dynamics Observatory

DOI: 10.1007/s11207-010-9697-y

Cite this article as:
Martens, P.C.H., Attrill, G.D.R., Davey, A.R. et al. Sol Phys (2012) 275: 79. doi:10.1007/s11207-010-9697-y

Abstract

In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre-Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO).

Keywords

Instrumentation and data managementSolar Dynamics Observatory
Download to read the full article text

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • P. C. H. Martens
    • 1
    • 2
  • G. D. R. Attrill
    • 1
  • A. R. Davey
    • 1
  • A. Engell
    • 1
  • S. Farid
    • 1
  • P. C. Grigis
    • 1
  • J. Kasper
    • 1
  • K. Korreck
    • 1
  • S. H. Saar
    • 1
  • A. Savcheva
    • 1
    • 12
  • Y. Su
    • 1
  • P. Testa
    • 1
  • M. Wills-Davey
    • 1
  • P. N. Bernasconi
    • 3
  • N.-E. Raouafi
    • 3
  • V. A. Delouille
    • 4
  • J. F. Hochedez
    • 4
  • J. W. Cirtain
    • 5
  • C. E. DeForest
    • 6
  • R. A. Angryk
    • 7
  • I. De Moortel
    • 8
  • T. Wiegelmann
    • 9
  • M. K. Georgoulis
    • 10
  • R. T. J. McAteer
    • 11
    • 14
  • R. P. Timmons
    • 13
  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  2. 2.Department of PhysicsMontana State UniversityBozemanUSA
  3. 3.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA
  4. 4.SIDC-Royal Observatory of BelgiumBrusselsBelgium
  5. 5.Marshall Space Flight Center-NASAMarshall Space Flight CenterUSA
  6. 6.Southwest Research InstituteBoulderUSA
  7. 7.Department of Computer ScienceMontana State UniversityBozemanUSA
  8. 8.School of Mathematics & StatisticsUniversity of St Andrews, North HaughSt AndrewsUK
  9. 9.Max-Planck-Institut für SonnensystemforschungKatlenburg-LindauGermany
  10. 10.Research Center for Astronomy and Applied MathematicsAcademy of AthensAthensGreece
  11. 11.School of PhysicsTrinity College DublinDublin 2Ireland
  12. 12.Astronomy DepartmentBoston UniversityBostonUSA
  13. 13.Lockheed Martin Advanced Technology CenterPalo AltoUSA
  14. 14.Department of AstronomyNew Mexico State UniversityLas CrucesUSA