Skip to main content
Log in

The reduction of hydrology-induced gravity variations at sites with insufficient hydrological instrumentation

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The hydrology-induced gravity variation is a limiting factor in the study of geophysical phenomena with superconducting gravimeters. The goal of this paper is to analyse and reduce the hydrological effects on gravity at the Vienna (Austria) station that is a typical example of a site insufficiently equipped with hydro-meteorological sensors. The hydrological effects are studied in a local as well as a global scale. A new method for computing the local soil moisture effect is presented. This approach overcomes the lack of in situ soil moisture observations and utilizes gravity residuals in the calibration process of a local conceptual 1D soil moisture model. In addition, only a priori soil moisture variations, provided by a global hydrological model, in situ temperature, precipitation and snow height time series are required in this approach. The coupling of the calibration process to gravity residuals increases the sensitivity of the modelled soil moisture to corrections that are applied within the processing of the gravity observations. This is shown in this study using different global hydrological corrections. The differences between these corrections are reflected in the modelled soil moisture so that the total hydrological effect (local plus global) is almost identical. The total hydrological effects reduce the observed gravity variation by 30%. Moreover, both seasonal as well as shortterm variations clearly related to observed hydro-meteorological parameters are minimized. On the other hand, the sensitivity of the modelled soil moisture to gravity corrections implies that the long-term gravity residuals are not suitable for local hydrological studies unless the significant differences between the global hydrological corrections are resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banka D. and Crossley D., 1999. Noise levels of superconducting gravimeters at seismic frequencies. Geophys. J. Int., 139, 87–97.

    Article  Google Scholar 

  • Boy J.-P. and Hinderer J., 2006. Study of the seasonal gravity signal in superconducting gravimeter data. J. Geodyn., 41, 227–233.

    Article  Google Scholar 

  • Brocca L., Melone F. and Moramarco T., 2008. On the estimation of antecedent wetness conditions in rainfall–runoff modelling. Hydrol. Process., 22, 629–642.

    Article  Google Scholar 

  • Courtier N., Ducarme B., Goodkind J., Hinderer J., Imanishi Y., Seama N., Sun H., Merriam J., Bengert B. and Smylie D.E., 2000. Global superconducting gravimeter observations and the search for the translational modes of the inner core. Phys. Earth Planet Inter., 117, 3–20.

    Article  Google Scholar 

  • Creutzfeldt B., Güntner A., Wziontek H. and Merz B., 2010a. Reducing local hydrology from highprecision gravity measurements: a lysimeter-based approach. Geophys. J. Int., 183, 178–187.

    Article  Google Scholar 

  • Creutzfeldt B., Güntner A., Vorogushyn S. and Merz B., 2010b. The benefits of gravimeter observations for modelling water storage changes at the field scale. Hydrol. Earth Syst. Sci., 14, 1715–1730.

    Article  Google Scholar 

  • Creutzfeldt B., Ferré T., Troch P., Merz B., Wziontek H. and Güntner A., 2012. Total water storage dynamics in response to climate variability and extremes: Inference from long-term terrestrial gravity measurement. J. Geophys. Res.-Atmos., 117, D08112.

  • Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.J., Park B.K., Peubey C., de Rosnay P., Tavolat C., Thépaut J.N. and Vitart F., 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J. Roy. Meteor. Soc., 137, 553–597.

    Article  Google Scholar 

  • Döll P., Kaspar F. and Lehner B., 2003. A global hydrological model for deriving water availability indicators: model tuning and validation. J. Hydrol., 270, 105–134.

    Article  Google Scholar 

  • Ducarme B., Sun H.-P. and Xu J.-Q., 2007. Determination of the free core nutation period from tidal gravity observations of the GGP superconducting gravimeter network. J. Geodesy, 81, 179–187.

    Article  Google Scholar 

  • Farrell W.E., 1972. Deformation of the Earth by surface loads. Rev. Geophys., 10, 761–797.

    Article  Google Scholar 

  • Fukumori I., 2002. A Partitioned Kalman Filter and Smoother. Mon. Weather Rev., 130, 1370–1383.

    Article  Google Scholar 

  • Hasan S., Troch P.A., Boll J. and Kroner C., 2006. Modeling the hydrological effect on local gravity at Moxa, Germany. J. Hydrometeorol., 7, 346–354.

    Article  Google Scholar 

  • Heck B. and Seitz K., 2007. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J. Geodesy, 81, 121–136.

    Article  Google Scholar 

  • Hinderer J., Crossley D. and Warburton R.J., 2007. Gravimetric methods — superconducting gravity meters. In: Schubert G. (Ed.), Treatise on Geophysics, 3. Elsevier, Amsterdam, 65–122.

    Article  Google Scholar 

  • Hinderer J., Pfeffer J., Boucher M., Nahmani S., Linage C., Boy J.P., Genthon P., Seguis L., Favreau G., Bock O. and Descloitres M., 2012. Land water storage changes from ground and space geodesy: first results from the GHYRAF (Gravity and Hydrology in Africa) experiment. Pure Appl. Geophys., 169, 1391–1410.

    Article  Google Scholar 

  • Johnson A.I., 1967. Specific Yield-Compilation of Specific Yields for Various Materials. Water Supply Paper 1662-D. United States Government Printing Office, Washington D.C.

    Google Scholar 

  • Jonas T., Marty C. and Magnusson J., 2009. Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. J. Hydrol., 378, 161–167.

    Article  Google Scholar 

  • Kim S.-B., Lee T. and Fukumori I., 2007. Mechanisms controlling the interannual variation of mixed layer temperature averaged over the Niño-3 region. J. Climate, 20, 3822–3843.

    Article  Google Scholar 

  • Klügel T. and Wziontek H., 2009. Correcting gravimeters and tiltmeters for atmospheric mass attraction using operational weather models. J. Geodyn., 48, 204–210.

    Article  Google Scholar 

  • Longuevergne L., Boy J.P., Florsch N., Viville D., Ferhat G., Ulrich P., Luck B. and Hinderer J., 2009. Local and global hydrological contributions to gravity variations observed in Strasbourg. J. Geodyn., 48, 189–194.

    Article  Google Scholar 

  • Lundberg A., Richardson-Näslund C. and Andersson C., 2006. Snow density variations: consequences for ground-penetrating radar. Hydrol. Process., 20, 1483–1495.

    Article  Google Scholar 

  • Marchand W., 2003. Applications and Improvement of a Georadarsystem to Assess Areal Snow Distribution for Advances in Hydrological Modelling. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway.

    Google Scholar 

  • Merriam J.B., 1992. Atmospheric pressure and gravity. Geophys. J. Int., 109, 488–500.

    Article  Google Scholar 

  • Meurers B., 2006. Long and short term hydrological effects on gravity in Vienna. Bulletin d’Information des Marées Terrestres, 142, 11343–11351.

    Google Scholar 

  • Moore I.D., Grayson R.B. and Ladson A.R., 1991. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process., 5, 3–30.

    Article  Google Scholar 

  • Mörikofer W., 1948. The dependence on altitude of the snow cover in the Alps. In: Proceedings Union Géodésique et Géophysique, Oslo, 161–170.

    Google Scholar 

  • Naujoks M., Kroner C., Weise A., Jahr T., Krause P. and Eisner S., 2010. Evaluating local hydrological modelling by temporal gravity observations and a gravimetric three-dimensional model. Geophys. J. Int., 182, 233–249.

    Google Scholar 

  • Pagiatakis S.D., 1988. Ocean Tide Loading on a Self-Gravitating, Compressible, Layered, Anisotropic, Viscoelastic and Rotating Earth with Solid Inner Core and Fluid Outer Core. Technical Report 139. University of New Brunswick, Fredericton, Canada.

    Google Scholar 

  • Rodell M., Houser P.R., Jambor U., Gottschalck J., Mitchell K., Meng C.J., Arsenault K., Cosgrove B., Radakovich J., Bosilovich M., Entin J.K., Walker J.P., Lohmann D. and Toll D., 2004. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc., 85, 381–394.

    Article  Google Scholar 

  • Steffen H. and Wu P., 2011. Glacial isostatic adjustment in Fennoscandia- A review of data and modeling. J. Geodyn., 52, 169–204.

    Article  Google Scholar 

  • Todd D.K. and Mays L.W., 2005. Groundwater Hydrology. 3rd Edition. John Wiley and Sons, Inc. Hoboken, NJ.

    Google Scholar 

  • Van Camp M., 1999. Measuring seismic normal modes with the GWR C021 superconducting gravimeter. Phys. Earth Planet Inter., 116, 81–92.

    Article  Google Scholar 

  • Van Camp M., de Viron O., Scherneck H.-G., Hinzen K.-G., Williams S.D.P., Lecocq T., Quinif Y. and Camelbeeck T., 2011. Repeated absolute gravity measurements for monitoring slow intraplate vertical deformation in western Europe. J. Geophys. Res.-Sol. Earth, 116, B08402.

  • Virtanen H., Tervo M. and Bilker-Koivula M., 2006. Comparison of superconducting gravimeter observations with hydrological models of various spatial extents. Bulletin d’Information des Marées Terrestres, 142, 11361–11368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Mikolaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikolaj, M., Meurers, B. & Mojzeš, M. The reduction of hydrology-induced gravity variations at sites with insufficient hydrological instrumentation. Stud Geophys Geod 59, 424–437 (2015). https://doi.org/10.1007/s11200-014-0232-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-014-0232-8

Keywords

Navigation