Skip to main content
Log in

Evolution of photosystem I and the control of global enthalpy in an oxidizing world

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Life on earth is governed by light, chemical reactions, and the second law of thermodynamics, which defines the tendency for increasing entropy as an expression of disorder or randomness. Life is an expression of increasing order, and a constant influx of energy and loss of entropic wastes are required to maintain or increase order in living organisms. Most of the energy for life comes from sunlight and, thus, photosynthesis underlies the survival of all life forms. Oxygenic photosynthesis determines not only the global amount of enthalpy in living systems, but also the composition of the Earth’s atmosphere and surface. Photosynthesis was established on the Earth more than 3.5 billion years ago. The primordial reaction center has been suggested to comprise a homodimeric unit resembling the core complex of the current reaction centers in Chlorobi, Heliobacteria, and Acidobacteria. Here, an evolutionary scenario based on the known structures of the current reaction centers is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447:58–63

    Article  PubMed  CAS  Google Scholar 

  • Amunts A, Toporik H, Borovikova A, Nelson N (2010) Structure determination and improved model of plant photosystem I. J Biol Chem 285:3478–3486

    Article  PubMed  CAS  Google Scholar 

  • Barber J (2004) Engine of life and big bang of evolution: a personal perspective. Photosynth Res 80:137–155

    Article  PubMed  CAS  Google Scholar 

  • Barnes CR (1893) On the food of green plants. Bot Gaz 18:403–411

    Article  Google Scholar 

  • Bendall DS, Howe CJ, Nisbet EG, Nisbet RE (2008) Photosynthetic and atmospheric evolution. Philos Trans R Soc Lond B Biol Sci 363:2625–2628

    Article  PubMed  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2003) The crystal structure of plant photosystem I. Nature 426:630–635

    Article  PubMed  CAS  Google Scholar 

  • Berthold DA, Babcock GT, Yocum CF (1981) A highly resolved oxygen-evolving photosystem II preparation from spinach thylakoid membranes. FEBS Lett 134:231–234

    Article  CAS  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–111

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23:94–97

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA, Costas AM, Maresca JA, Chew AG, Klatt CG, Bateson MM et al (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. Science 317:523–526

    Article  PubMed  CAS  Google Scholar 

  • Burke DH, Hearst JE, Sidow A (1993) Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci USA 90:7134–7138

    Article  PubMed  CAS  Google Scholar 

  • Buttner M, Xie DL, Nelson H, Pinther W, Hauska G, Nelson N (1992) Photosynthetic reaction center genes in green sulfur bacteria and in photosystem 1 are related. Proc Natl Acad Sci USA 89:8135–8139

    Article  PubMed  CAS  Google Scholar 

  • Clausen J, Junge W (2004) Detection of an intermediate of photosynthetic water oxidation. Nature 430:480–483

    Article  PubMed  CAS  Google Scholar 

  • Clayton RK (1973) Primary processes in bacterial photosynthesis. Annu Rev Biophys Bioeng 2:131–156

    Article  PubMed  CAS  Google Scholar 

  • Clayton RK, Haselkorn R (1972) Protein components of bacterial photosynthetic membranes. J Mol Biol 68:97–105

    Article  PubMed  CAS  Google Scholar 

  • Cogdell RJ, Gall A, Kohler J (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q Rev Biophys 39:227–324

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J, Michel H (1989) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. Science 245:1463–1473

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Isozaki Y (2008) The story of O2. Science 322:540–542

    Article  PubMed  CAS  Google Scholar 

  • Feher G (1971) Some chemical and physical properties of a bacterial reaction center particle and its primary photochemical reactants. Photochem Photobiol 14:373–387

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Govindjee G, Govindjee R (1974) The absorption of light in photosynthesis. Sci Am 231:68–82

    PubMed  CAS  Google Scholar 

  • Haumann M, Müller Liebisch CP, Iuzzolino L, Dittmer J, Grabolle M, Neisius T, Meyer-Klaucke W, Dau H (2005) Structural and oxidation state changes of the photosystem II manganese complex in four transitions of the water oxidation cycle (S0→S1, S1 → S2, S2 → S3, and S3, 4 → S0) characterized by X-ray absorption spectroscopy at 20 K and room temperature. Biochemistry 44:1894–1908

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Lavorel J (1964) The primary reactions of photosynthesis. Bull Soc Chim Biol (Paris) 46:1607–1626

    CAS  Google Scholar 

  • Joliot P, Joliot A, Kok B (1968) Analysis of the interactions between the two photosystems in isolated chloroplasts. Biochim Biophys Acta 153:635–652

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss WN (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Ǻ resolution. Nature 411:909–917

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N, Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Ǻ resolution. Proc Natl Acad Sci USA 100:98–103

    Article  PubMed  CAS  Google Scholar 

  • Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution. 1. A linear 4-step mechanism. Photochem Photobiol 11:457–475

    Article  PubMed  CAS  Google Scholar 

  • Krasnovsky AA (1948) Reversible photochemical reduction of chlorophyll by ascorbic acid. Dokl AN SSSR 60:421–424

    Google Scholar 

  • Krasnovsky AA (1992) Excited chlorophylls and related problems. Photosynth Res 33:177–193

    Article  Google Scholar 

  • Krauss N, Hinrichs W, Witt I, Fromme P, Prizkow W, Dauter Z, Betzel C, Wilson KS, Witt HT, Saenger W (1993) Three-dimensional structure of system I of photosynthesis at 6 Å resolution. Nature 361:326–330

    Article  CAS  Google Scholar 

  • Lavorel J, Joliot P (1972) A connected model of the photosynthetic unit. Biophys J 12:815–831

    Article  PubMed  CAS  Google Scholar 

  • Liebl U, Mockensturm-Wilson M, Trost JT, Brune DC, Blankenship RE, Vermaas W (1993) Single core polypeptide in the reaction center of the photosynthetic bacterium Heliobacillus mobilis: structural implications and relations to other photosystems. Proc Natl Acad Sci USA 90:7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Massey V, Palmer P, Ballou D (1971) In: Kamin H (ed) Flavins and Flavoproteins, vol 111. University Park Press/Butterworths, Baltimore

    Google Scholar 

  • Mazor Y, Greenberg I, Toporik H, Beja O, Nelson N (2012) The evolution of photosystem I in light of phage-encoded reaction centers. Philos Trans R Soc Lond B Biol Sci 367:3400–3405

    Article  PubMed  CAS  Google Scholar 

  • McCormick DB, Koster JF, Veeger C (1967) On the mechanisms of photochemical reductions of FAD and FAD-dependent flavoproteins. Eur J Biochem 2:387

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Junge W (1997) On the origin of photosynthesis as inferred from sequence analysis. Photosynth Res 51:27–42

    Article  CAS  Google Scholar 

  • Nelson N (1992) Evolution of organellar proton-ATPases. Biochim Biophys Acta 1100:109–124

    Article  PubMed  CAS  Google Scholar 

  • Nelson N (2011) Photosystems and global effects of oxygenic photosynthesis. Biochim Biophys Acta 1807:856–863

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Ben-Shem A (2002) Photosystem I reaction center: past and future. Photosynth Res 73:193–206

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5:971–982

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Ben-Shem A (2005) The structure of photosystem I and evolution of photosynthesis. BioEssays 27:914–922

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Yocum C (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Nelson H, Racker E (1972) Photoreaction of FMN-Tricine and its participation in photophosphorylation. Photochem Photobiol l6:48l–489

    Google Scholar 

  • Nitschke W, Rutherford AW (1991) Photosynthetic reaction centers: variation on a common structural theme? Trends Biochem Sci 16:241–245

    Article  PubMed  CAS  Google Scholar 

  • Reed DW (1969) Isolation and composition of a photosynthetic reaction center complex from Rhodopseudomonas spheroides. J Biol Chem 244:4936–4941

    PubMed  CAS  Google Scholar 

  • Rouxel OJ, Bekker A, Edwards KJ (2005) Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science 307:1088–1091

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AW, Osyczka A, Rappaport F (2012) Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O(2). FEBS Lett 586:603–616

    Article  PubMed  CAS  Google Scholar 

  • Sharon I, Alperovitch A, Rohwer F, Haynes M, Glaser F, Atamaa-Ismaeel N, Pinter RY, Partensky F, Koonin EV, Wolf YI, Nelson N, Oded Béjà O (2009) Photosystem I gene cassettes are present in marine virus genomes. Nature 461:258–262

    Article  PubMed  CAS  Google Scholar 

  • Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705

    Article  PubMed  CAS  Google Scholar 

  • Stock D, Gibbons C, Arechaga I, Leslie AG, Walker JE (2000) The rotary mechanism of ATP synthase. Curr Opin Struct Biol 10:672–679

    Article  PubMed  CAS  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  PubMed  CAS  Google Scholar 

  • Vermaas WF (1994) Evolution of heliobacteria: implications for photosynthetic reaction center complexes. Photosynth Res 41:285–294

    Article  PubMed  CAS  Google Scholar 

  • Walker JE (2013) The ATP synthase: the understood, the uncertain and the unknown. Biochem Soc Trans 41:1–16

    Article  PubMed  CAS  Google Scholar 

  • Yeates TO, Komiya H, Chirino A, Rees DC, Allen JP, Feher G (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions. Proc Natl Acad Sci USA 85:7993–7997

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Jordan R, Schlodder E, Fromme P, Witt HT (2000) First photosystem II crystals capable of water oxidation. Biochim Biophys Acta 1457:103–105

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, N. Evolution of photosystem I and the control of global enthalpy in an oxidizing world. Photosynth Res 116, 145–151 (2013). https://doi.org/10.1007/s11120-013-9902-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9902-6

Keywords

Navigation