Skip to main content
Log in

Kinetics and functional diversity among the five members of the NADP-malic enzyme family from Zea mays, a C4 species

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

NADP-malic enzyme (NADP-ME) is involved in different metabolic pathways in several organisms due to the relevant physiological functions of the substrates and products of its reaction. In plants, it is one of the most important proteins that were recruited to fulfil key roles in C4 photosynthesis. Recent advances in genomics allowed the characterization of the complete set of NADP-ME genes from some C3 species, as Arabidopsis thaliana and Oryza sativa; however, the characterization of the complete NADP-ME family from a C4 species has not been performed yet. In this study, while taking advantage of the complete Zea mays genome sequence recently released, the characterization of the whole NADP-ME family is presented. The maize NADP-ME family is composed of five genes, two encoding plastidic NADP-MEs (ZmC4- and ZmnonC4-NADP-ME), and three cytosolic enzymes (Zmcyt1-, Zmcyt2-, and Zmcyt3-NADP-ME). The results presented clearly show that each maize NADP-ME displays particular organ distribution, response to stress stimuli, and differential biochemical properties. Phylogenetic footprinting studies performed with the NADP-MEs from several grasses, indicate that four members of the maize NADP-ME family share conserved transcription factor binding motifs with their orthologs, indicating conserved physiological functions for these genes in monocots. Based on the results obtained in this study, and considering the biochemical plasticity shown by the NADP-ME, it is discussed the relevance of the presence of a multigene family, in which each member encodes an isoform with particular biochemical properties, in the evolution of the C4 NADP-ME, improved to fulfil the requirements for an efficient C4 mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez CE, Detarsio E, Moreno S, Andreo CS, Drincovich MF (2012) Functional characterization of residues involved in redox modulation in maize photosynthetic NADP-malic enzyme activity. Plant Cell Physiol 53:1144–1153. doi:10.1093/pcp/pcs059

    Article  PubMed  CAS  Google Scholar 

  • Arias CA, Drincovich MF, Andreo CS, Gerrard Wheeler MC (2013) Fumarate and cytosolic pH as modulators of the synthesis or consumption of C4 organic acids through NADP-malic enzyme in Arabidopsis thaliana. Plant Mol Biol 81:297–307

    Article  PubMed  CAS  Google Scholar 

  • Aubry S, Brown NJ, Hibberd JM (2011) The role of proteins in C(3) plants prior to their recruitment into the C(4) pathway. J Exp Bot 62:3049–3059. doi:10.1093/jxb/err012

    Article  PubMed  CAS  Google Scholar 

  • Casati P, Drincovich MF, Edwards GE, Andreo CS (1999) Malate metabolism through NADP-malic enzyme in plant defense. Photosynth Res 61:99–105. doi:10.1590/S0100-879X1999001000002

    Article  CAS  Google Scholar 

  • Chang Y-M, Liu W-Y, Shih AC-C, Shen M-N, Lu C-H, Lu M-YJ, Yang H-W, Wang TY, Chen SC, Chen SM, Li WH, Ku MS (2012) Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol 160:165–177. doi:10.1104/pp.112.203810

    Article  PubMed  CAS  Google Scholar 

  • Chi W, Yang J, Wu N, Zhang F (2004) Four rice genes encoding NADP malic enzyme exhibit distinct expression profiles. Biosci Biotechnol Biochem 68:1865–1874. doi:10.1271/bbb.68.1865

    Article  PubMed  CAS  Google Scholar 

  • Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730. doi:10.1074/jbc.275.3.1723

    Article  PubMed  CAS  Google Scholar 

  • Christin P-A, Samaritani E, Petitpierre B, Salamin N, Besnard G (2009) Evolutionary insights on C4 photosynthetic subtypes in grasses from genomics and phylogenetics. Genome Biol Evol 1:221–230

    Article  PubMed  Google Scholar 

  • Cushman JC (1992) Characterization and expression of a NADP-malic enzyme cDNA induced by salt stress from the facultative crassulacean acid metabolism plant, Mesembryanthemun crystallinum. Eur J Biochem 208:259–266

    Google Scholar 

  • de Pater S, Greco V, Pham K, Memelink J, Kijne J (1996) Characterization of a zinc-dependent transcriptional activator from arabidopsis. Nucl Acids Res 24:4624–4631. doi:10.1093/nar/24.23.4624

    Article  PubMed  Google Scholar 

  • Detarsio E, Gerrard Wheeler MC, Campos Bermúdez VA, Andreo CS, Drincovich MF (2003) Maize C4 NADP-malic enzyme. Expression in Escherichia coli and characterization of site-direct mutants at the putative nucleotide-binding sites. J Biol Chem 278:13757–13764. doi:10.1074/jbc.M212530200

    Article  PubMed  CAS  Google Scholar 

  • Detarsio E, Alvarez CE, Saigo M, Andreo CS, Drincovich MF (2007) Identification of domains involved in tetramerization and malate inhibition of maize C4 NADP-malic enzyme. J Biol Chem 282:6053–6060. doi:10.1074/jbc.M609436200

    Article  PubMed  CAS  Google Scholar 

  • Detarsio E, Maurino VG, Alvarez CE, Müller GL, Andreo CS, Drincovich MF (2008) Maize cytosolic NADP-malic enzyme (ZmCytNADP-ME): a phylogenetically distant isoform specifically expressed in embryo and young root. Plant Mol Biol 68:355–367. doi:10.1007/s11103-008-9375-8

    Article  PubMed  CAS  Google Scholar 

  • Doubnerová V, Ryšlavá H (2011) What can enzymes of C4 photosynthesis do for plants under stress? Plant Sci 180:575–583

    Article  PubMed  Google Scholar 

  • Drincovich MF, Casati P, Andreo CS, Donahue R, Edwards GE (1998) UV-B induction of NADP-malic enzyme in etiolated maize seedlings. Plant Cell Environ 21:63–70. doi:10.1046/j.1365-3040.1998.00240.x

    Article  CAS  Google Scholar 

  • Drincovich MF, Casati P, Andreo CS (2001) NADP-malic enzyme from plants: a ubiquitous enzyme involved in different metabolic pathways. FEBS Lett 490:1–6

    Article  PubMed  CAS  Google Scholar 

  • Drincovich MF, Lara M, Maurino VG, Andreo C (2010) C4 decarboxylases. Different solutions for the same biochemical problem, the provision of CO2 in the bundle sheath cells. In: Raghavendra A, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms. Springer, Heidelberg, pp 277–300

    Chapter  Google Scholar 

  • Eastmond PJ, Dennis DT, Rawsthorne S (1997) Evidence that a malate/inorganic phosphate exchange translocator imports carbon across the leucoplast envelope for fatty acid synthesis in developing castor seed endosperm. Plant Physiol 114:851–856. doi:10.1104/pp.114.3.851

    PubMed  CAS  Google Scholar 

  • Edwards GE, Walker DA (1983) C3, C4: mechanisms, and cellular and environmental regulation, of photosynthesis. Blackwell Scientific publications, Oxford

    Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984. doi:10.1110/ps.8.5.978

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016. doi:10.1006/jmbi.2000.3903

    Article  PubMed  CAS  Google Scholar 

  • Estavillo GM, Rao SK, Reiskind JB, Bowes G (2007) Characterization of the NADP malic enzyme gene family in the facultative, single-cell C4 monocot Hydrilla verticillata. Photosynth Res 1:43–57. doi:10.1007/s11120-007-9212-y

    Article  Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116. doi:10.1111/j.1365-313X.2010.04459.x

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. Plant Cell 10:1043–1054. doi:10.1105/tpc.12.4.599

    PubMed  CAS  Google Scholar 

  • Franke KE, Adams DO (1995) Cloning a full-length cDNA for malic enzyme (EC 1.1.40.) from grape berries. Plant Physiol 107:1009–1010. doi:10.1104/pp.107.3.1009

    Article  PubMed  CAS  Google Scholar 

  • Furbank RT (2011) Evolution of the C(4) photosynthetic mechanism: are there really three C(4) acid decarboxylation types? J Exp Bot 62:3103–3108. doi:10.1093/jxb/err080

    Article  PubMed  CAS  Google Scholar 

  • Fushimi T, Umeda M, Shimazaki T, Kato A, Toriyama K, Uchimiya H (1994) Nucleotide sequence of a rice cDNA similar to a maize NADP-dependent malic enzyme. Plant Mol Biol 24:965–967. doi:10.1007/BF00014450

    Article  PubMed  CAS  Google Scholar 

  • Gerrard Wheeler MC, Tronconi MA, Drincovich MF, Andreo CS, Flügge U, Maurino VG (2005) A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol 139:39–51. doi:10.1104/pp.105.065953.1

    Article  Google Scholar 

  • Gerrard Wheeler MC, Arias CL, Tronconi MA, Maurino VG, Andreo CS, Drincovich MF (2008) Arabidopsis thaliana NADP-malic enzyme isoforms: high degree of identity but clearly distinct properties. Plant Mol Biol 67:231–242. doi:10.1007/s11103-008-9313-9

    Article  CAS  Google Scholar 

  • Gerrard Wheeler MC, Arias C, Maurino VG, Andreo CS, Drincovich MF (2009) Identification of domains involved in the allosteric regulation of cytosolic Arabidopsis thaliana NADP-malic enzymes. FEBS J. 276:5665–5677. doi:10.1111/j.1742-4658.2009.07258.x

    Article  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2011) Phytozome: a comparative platform for green plant genomics. Nucl Acids Res 40:1–9. doi:10.1093/nar/gkr944

    Google Scholar 

  • Gu Q, Ferrándiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517

    PubMed  CAS  Google Scholar 

  • Hatch MD (1987) C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta 895:81–106

    Article  CAS  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747. doi:10.1093/molbev/msg088

    Article  PubMed  CAS  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19. doi:10.1186/gb-2007-8-2-r19

    Article  PubMed  Google Scholar 

  • Hobo T, Kowyama Y, Hattori T (1999) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. PNAS 96:15348–15353. doi:10.1073/pnas.96.26.15348

    Article  PubMed  CAS  Google Scholar 

  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431. doi:10.1093/nar/gkg599

    Article  PubMed  CAS  Google Scholar 

  • Honda H, Shimada H, Akagi H (1997) Isolation of cDNA for an NADP-malic enzyme from Aloe arborescens. DNA Res 4:397–400. doi:10.1093/dnares/4.6.397

    Article  PubMed  CAS  Google Scholar 

  • Honda H, Akagi H, Shimada H (2000) An isozyme of the NADP-malic enzyme of a CAM plant, Aloe arborescens, with variation on conservative amino acid residues. Gene 243:85–92

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Foster R, Nakajima M, Shimamoto K, Chua NH (1994) The rice bZIP transcriptional activator RITA-1 is highly expressed during seed development. Plant Cell 6:1277–1287. doi:10.1105/tpc.6.9.1277

    PubMed  CAS  Google Scholar 

  • Jothi R, Cuddapah S, Barski A, Cui K, Zhao K (2008) Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res 36:5221–5231. doi:10.1093/nar/gkn488

    Article  PubMed  CAS  Google Scholar 

  • Katagiri F, Lam E, Chua NH (1989) Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 340:727–730. doi:10.1038/340727a0

    Article  PubMed  CAS  Google Scholar 

  • Kawaoka A, Kaothien P, Yoshida K, Endo S, Yamada K, Ebinuma H (2000) Functional analysis of tobacco LIM protein Ntlim1 involved in lignin biosynthesis. Plant J 22:289–301. doi:10.1046/j.1365-313x.2000.00737.x

    Article  PubMed  CAS  Google Scholar 

  • Kunieda T, Mitsuda N, Ohme-Takagi M, Takeda S, Aida M, Tasaka M, Kondo M, Nishimura M, Hara-Nishimura I (2008) NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis. Plant Cell 20:2631–2642. doi:10.1105/tpc.108.060160

    Article  PubMed  CAS  Google Scholar 

  • Lai LB, Tausta SL, Nelson TM (2002) Differential regulation of transcripts encoding cytosolic NADP-malic enzyme in C3 and C4 Flaveria species. Plant Physiol 128:140–149. doi:10.1104/pp.010449

    Article  PubMed  CAS  Google Scholar 

  • Langdale JA (2011) C4 cycles: past, present, and future research on C4 photosynthesis. Plant Cell 23:3879–3892. doi:10.1105/tpc.111.092098

    Article  PubMed  CAS  Google Scholar 

  • Laporte MM, Shen B, Tarczynski MC (2002) Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot 3:699–705. doi:10.1093/jexbot/53.369.699

    Article  Google Scholar 

  • Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 6:2247–2254. doi:10.1093/jxb/erq098

    Article  Google Scholar 

  • Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SR, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42:1060–1069. doi:10.1038/ng.7031060

    Article  PubMed  CAS  Google Scholar 

  • Lipka B, Steinmüller K, Rosche E, Borsch D, Westhoff P (1994) The C3 plant Flaveria pringlei contains a plastidic NADP-malic enzyme which is orthologous to the C4 isoform of the C4 plant F. trinervia. Plant Mol Biol 26:1775–1783. doi:10.1007/BF00019491

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Saint DA (2002) Validation of a quantitative method for real time PCR kinetics. Biochem Biophys Res Commun 294:347–353. doi:10.1016/S0006-291X

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Han H, Li J, Wong L (2005) DNAFSMiner: a web-based software toolbox to recognize two types of functional sites in DNA sequences. Bioinformatics 21:671–673. doi:10.1093/bioinformatics/bth437

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Fu J, Gu D, Liu W, Liu T, Peng Y, Wang J, Wang G (2008) Genome-wide analysis of gene expression profiles during the kernel development of maize (Zea mays L.). Genomics 91:378–387. doi:10.1016/j.ygeno.2007.12.002

    Article  PubMed  CAS  Google Scholar 

  • López-Becerra E, Puigdomenech P, Stiefel V (1998) A gene coding for a malic enzyme expressed in the embryo root epidermis from Zea mays (Accession No. AJ224847) (PGR98-081). Plant Physiol 117:332

    Google Scholar 

  • Maddaloni M, Donini G, Balconi C, Rizzi E, Gallusci P, Forlani F, Lohmer S, Thompson R, Salamini F, Motto M (1996) The transcriptional activator Opaque-2 controls the expression of a cytosolic form of pyruvate orthophosphate dikinase-1 in maize endosperms. Mol Gen Genet 250:647–654. doi:10.1007/s004380050117

    PubMed  CAS  Google Scholar 

  • Manoli A, Sturaro A, Trevisan S, Quaggiotti S, Nonis A (2012) Evaluation of candidate reference genes for qPCR in maize. J Plant Physiol 169:807–815. doi:10.1016/j.jplph.2012.01.019

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Garcia JF, Moyano E, Alcocer MJC, Martin C (1998) Two bZIP proteins from Antirrhinum flowers referentially bind a hybrid C-box/G-box motif and help to define a new sub-family of bZIP transcription factors. Plant J 13:489–505. doi:10.1046/j.1365-313X.1998.00050.x

    Article  PubMed  CAS  Google Scholar 

  • Martinoia E, Rentsch D (1994) Malate compartmentation: responses to a complex metabolism. Annu Rev Plant Physiol Plant Mol Biol 45:447–467. doi:10.1146/annurev.pp.45.060194.002311

    Article  CAS  Google Scholar 

  • Maurino VG, Drincovich MF, Casati P, Andreo CS, Edwards GE, Ku MSB, Gupta SK, Franceschi VR (1997) NADP-malic enzyme: immunolocalization in different tissues of the C4 plant maize and the C3 plant wheat. J Exp Bot 48:799–811. doi:10.1093/jxb/48.3.799

    Article  CAS  Google Scholar 

  • Maurino VG, Saigo M, Andreo CS, Drincovich MF (2001) Nonphotosynthetic NADP-malic enzyme from maize: a constitutively expressed enzyme that responds to plant defense inducers. Plant Mol Biol 45:409–420. doi:10.1023/A:1010665910095

    Article  PubMed  CAS  Google Scholar 

  • Maurino VG, Gerrard Wheeler MC, Andreo CS, Drincovich MF (2009) Redundancy is sometimes seen only by the uncritical: does Arabidopsis need six malic enzyme isoforms? Plant Sci 176:715–721. doi:10.1016/j.plantsci.2009.02.012

    Article  CAS  Google Scholar 

  • Mikami K, Sakamoto A, Iwabuchi M (1994) The HBP-1 family of wheat basic leucine zipper proteins interacts with overlapping & acting hexamer motifs of plant histone genes. J Biol Chem 269:9974–9985

    PubMed  CAS  Google Scholar 

  • Monte E, Tepperman JM, Al-Sady B, Kaczorowski KA, Alonso JM, Ecker JR, Li X, Zhang Y, Quail PH (2004) The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proc Natl Acad Sci 101:16091–16098. doi:10.1073/pnas.0407107101

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee K, Choudhury AR, Gupta B, Gupta S, Sengupta DN (2006) An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice. BMC Plant Biol 6:1–14. doi:10.1186/1471-2229-6-18

    Article  Google Scholar 

  • Müller D, Schmitz G, Theres K (2006) Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell 18:586–597. doi:10.1105/tpc.105.038745

    Article  PubMed  Google Scholar 

  • Müller GL, Drincovich MF, Andreo CS, Lara MV (2008) Nicotiana tabacum NADP-malic enzyme: cloning, characterization and analysis of biological role. Plant Cell Physiol 49:469–480. doi:10.1093/pcp/pcn022

    Article  PubMed  Google Scholar 

  • Nakano T, Nishiuchi T, Suzuki K, Fujimura T, Shinshi H (2006) Studies on transcriptional regulation of endogenous genes by ERF2 transcription factor in tobacco cells. Plant Cell Physiol 47:554–558. doi:10.1093/pcp/pcj017

    Article  PubMed  CAS  Google Scholar 

  • Ni M, Tepperman JM, Quail PH (1998) PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95:657–667. doi:10.1016/S0092-8674(00)81636-0

    Article  PubMed  CAS  Google Scholar 

  • Niu X, Guiltinan MJ (1994) DNA binding specificity of the wheat bZIP protein EmBP-1. Nucleic Acids Res 22(23):4969–4978. doi:10.1093/nar/22.23.4969

    Article  PubMed  CAS  Google Scholar 

  • Obayashi T, Kinoshita K (2010) Coexpression landscape in ATTED-II: usage of gene list and gene network for various types of pathways. J Plant Res 123:311–319. doi:10.1007/s10265-010-0333-6

    Article  PubMed  CAS  Google Scholar 

  • Oeda K, Salinas J, Chua NH (1991) A tobacco bZip trancription activator (TAF-1) binds to a G-box motif conserved in plant genes. EMBO J 10:1793–1802

    PubMed  CAS  Google Scholar 

  • Outlaw WH, Manchester J, Brown PH (1981) High levels of malic enzyme activities in Vicia faba L. epidermal tissue. Plant Physiol 68:1047–1051. doi:10.1104/pp.68.5.1047

    Article  PubMed  CAS  Google Scholar 

  • Ovcharenko I, Loots GG, Giardine BM, Hou M, Ma J, Hardison RC, Stubbs L, Miller W (2005) Mulan: multiple-sequence local alignment and visualization for studying function and evolution. Genome Res 15:184–194. doi:10.1101/gr.300720

    Article  PubMed  CAS  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553–3558

    PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 1(29):e45. doi:10.1093/nar/29.9.e45

    Article  Google Scholar 

  • Pick TR, Andrea Bräutigam A, Schlüter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H, Pieruschka R, Rascher U, Sonnewald U, Weber APM (2011) Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation. Plant Cell 23:1–13. doi:10.1105/tpc.111.090324

    Article  Google Scholar 

  • Sage RF, Zhu X-G (2011) Exploiting the engine of C(4) photosynthesis. J Exp Bot 62:2989–3000. doi:10.1093/jxb/err179

    Article  PubMed  CAS  Google Scholar 

  • Saigo M, Bologna F, Maurino VG, Detarsio E, Andreo CS, Drincovich MF (2004) Maize recombinant non-C4 NADP-malic enzyme: a novel dimeric malic enzyme with high specific activity. Plant Mol Biol 55:97–107. doi:10.1007/s11103-004-0472-z

    Article  PubMed  CAS  Google Scholar 

  • Saigo M, Alvarez CE, Andreo CS, Drincovich MF (2013) Plastidial NADP-malic enzymes from grasses: unraveling the way to the C4 specific isoforms. Plant Physiol Biochem 63:39–48. doi:10.1016/j.plaphy.2012.11.009

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Takehisa H, Kamatsuki K, Minami H, Namiki N, Ikawa H, Ohyanagi H (2013) RiceXPro Version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Res 41:1206–1213. doi:10.1093/nar/

    Article  Google Scholar 

  • Schaaf J, Walter MH, Hess D (1995) Primary metabolism in plant defense (regulation of a bean malic enzyme gene promoter in transgenic tobacco by developmental and environmental cues). Plant Physiol 108:949–960. doi:10.1104/pp.108.3.949

    PubMed  CAS  Google Scholar 

  • Schmidt RJ, Ketudat M, Aukerman MJ, Hoschek G (1992) Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell 4:689–700

    PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115. doi:10.1126/science.1178534

    Article  PubMed  CAS  Google Scholar 

  • Sell S, Hehl R (2004) Functional dissection of a small anaerobically induced bZIP transcription factor from tomato. Eur J Biochem 271:4534–4544. doi:10.1111/j.1432-1033.2004.04413.x

    Article  PubMed  CAS  Google Scholar 

  • Sibéril Y, Doireau P, Gantet P (2001) Plant bZIP G-box binding factors. Modular structure and activation mechanisms. Eur J Biochem 268:5655–5666. doi:10.1046/j.0014-2956.2001.02552.x

    Article  PubMed  Google Scholar 

  • Singh K, Dennis ES, Ellis JG, Llewellyn DJ, Tokuhisa JG, Wahleithner JA, Peacock WJ (1990) OCSBF-1, a maize ocs enhancer binding factor: isolation and expression during development. Plant Cell. doi:10.1105/tpc.2.9.891

    Google Scholar 

  • Smith RG, Gauthier DA, Dennis DT, Turpin DH (1992) Malate and pyruvate-dependent fatty acid synthesis in leucoplasts from developing castor endosperm. Plant Physiol 98:1233–1238. doi:10.1104/pp.98.4.1233

    Article  PubMed  CAS  Google Scholar 

  • Solano R, Nieto C, Paz-Ares J (1995) MYB.Ph3 transcription factor from Petunia hybrida induces similar DNA-bending/distortions on its two types of binding site. Plant J 8:673–682. doi:10.1046/j.1365-313X.1995.08050673.x

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed  CAS  Google Scholar 

  • Van Doorsselaere J, Villarroel R, Van Montagu M, Inzé D (1991) Nucleotide sequence of a cDNA encoding malic enzyme from poplar. Plant Physiol 96:1385–1386

    Article  PubMed  Google Scholar 

  • Veach YK, Martin RC, Mok DWS, Malbeck J, Vankova R, Mok MC (2003) O-glycosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol 131:1374–1380. doi:10.1104/pp.017210

    Article  PubMed  CAS  Google Scholar 

  • von Caemmerer S (2003) Furbank RT (2003) The C(4) pathway: an efficient CO(2) pump. Photosynth Res 77(2–3):191–207

    Article  Google Scholar 

  • Walter MH, Grima-Pettenatti J, Feuillet C (1994) Characterization of a bean (Phaseolus vulgaris L.) malic enzyme gene. Eur J Biochem 224:999–1009. doi:10.1111/j.1432-1033.1994.t01-1-00999.x

    Article  PubMed  CAS  Google Scholar 

  • Wasserman WW, Sandelin A (2004) Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 5:276–287. doi:10.1038/nrg1315

    Article  PubMed  CAS  Google Scholar 

  • Watson L, Dallwitz (1992) The grass genera of the world. C.A.B International, Wallingford

    Google Scholar 

  • Wong AYM, Colasanti J (2007) Maize floral regulator protein INDETERMINATE1 is localized to developing leaves and is not altered by light or the sink/source transition. J Exp Bot 58:403–414. doi:10.1093/jxb/erl206

    Article  PubMed  CAS  Google Scholar 

  • Xue G-P, Bower NI, McIntyre CL, Riding GA, Kazan K, Shorter R (2006) TaNAC69 from the NAC superfamily of transcription factors is up-regulated by abiotic stresses in wheat and recognises two consensus DNA-binding sequences. Funct Plant Biol 33:43–57. doi:10.1071/FP05161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

CSA, MFD and MS are members of the Researcher Career of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) and CEA and EM are fellows of the same institution. We thank Dr. Marcos A. Tronconi for the helpful discussion of sequence analysis. This study has been supported by National Agency for Promotion of Science and Technology (ANPCyT) and CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María F. Drincovich.

Additional information

Clarisa E. Alvarez and Mariana Saigo contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11120_2013_9839_MOESM1_ESM.tif

Supplemental Fig. 1 Expression levels of all NADP-ME transcripts in different parts of maize plant Data correspond to the transcript levels in different samples in relation to the expression found for actin1 reference gene. The values obtained are indicated above each bar. The abscissa indicates the samples tested: leaf blades (L); stems (St); roots (R); leaf sheaths (Sh); immature tassels (T); immature ears (E) and 14DAP grains (G). In all the cases, data represent the mean (±SD) of three independent assays (TIFF 186 kb)

Supplemental Table 1 MULAN output of C4-, nonC4-, Cyt1-, and Cyt3- orthologs groups analysis. (XLSX 16 kb)

Supplemental Table 2 Brief descriptions and references of the TF that putatively bind to NADP-ME genes (DOC 53 kb)

11120_2013_9839_MOESM4_ESM.xlsx

Supplemental Table 3 Rice coexpressed transcription factor genes that could putatively bind to the TFBS detected. The genes from O. sativa that share evolutionary conserved TFBS with Z. mays genes were analyzed with RiceFREND web tool. Mutual rank (MR) is the coexpression strength measure. MR = 1 corresponds to the strongest coexpression (XLSX 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, C.E., Saigo, M., Margarit, E. et al. Kinetics and functional diversity among the five members of the NADP-malic enzyme family from Zea mays, a C4 species. Photosynth Res 115, 65–80 (2013). https://doi.org/10.1007/s11120-013-9839-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9839-9

Keywords

Navigation