Skip to main content
Log in

Spatial distribution and turnover of root-derived carbon in alfalfa rhizosphere depending on top- and subsoil properties and mycorrhization

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

This study analyzed the extent to which root exudates diffuse from the root surface towards the soil depending on topsoil and subsoil properties and the effect of arbuscular mycorrhizal fungal hyphae on root-derived C distribution in the rhizosphere.

Methods

Alfalfa was grown in three-compartment pots. Nylon gauze prevented either roots alone or roots and arbuscular mycorrhizal fungal hyphae from penetrating into the rhizosphere compartments. 14CO2 pulse labeling enabled the measurement of 14C-labeled exudates in dissolved (DOC) and total organic carbon (TOC) in the rhizosphere, distributed either by diffusion alone or by diffusion, root hair and hyphal transport.

Results

Root exudation and microbial decomposition of exudates was higher in the rhizosphere with topsoil compared to subsoil properties. Exudates extended over 28 mm (DOC) and 20 mm (TOC). Different soil properties and mycorrhization, likely caused by the low arbuscular mycorrhizal colonization of roots (13 ± 4 % (topsoil properties) and 18 ± 5 % (subsoil properties)), had no effect.

Conclusions

Higher microbial decomposition compensated for higher root exudation into the rhizosphere with topsoil properties, which resulted in equal exudate extent when compared to the rhizosphere with subsoil properties. Higher 14C activity used for labeling compared with previous studies enabled the detection of low exudate concentrations at longer distances from the root surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beare MH, Coleman DC, Crossley DA Jr, Hendrix PF, Odum EP (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant Soil 170:5–22

    Article  CAS  Google Scholar 

  • Biernath C, Fischer H, Kuzyakov Y (2008) Root uptake of N-containing and N-free low molecular weight organic substances by maize: a 14C/15 N tracer study. Soil Biol Biochem 40:2237–2245

    Article  CAS  Google Scholar 

  • Cheng W (2009) Rhizosphere priming effect: its functional relationships with microbial turnover, evapotranspiration, and C–N budgets. Soil Biol Biochem 41:1795–1801

    Article  CAS  Google Scholar 

  • Cheng WX, Coleman DC, Carroll CR, Hoffmann CA (1993) In-situ measurement of root respiration and soluble C concentrations in the rhizosphere. Soil Biol Biochem 25:1189–1196

    Article  Google Scholar 

  • Darrah PR (1993) The rhizosphere and plant nutrition: a quantitative approach. Plant Soil 155(156):1–20

    Article  Google Scholar 

  • De Nobili M, Contin M, Mondini C, Brookes P (2001) Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol Biochem 33:1163–1170

    Article  Google Scholar 

  • Dilkes NB, Jones DL, Farrar J (2004) Temporal dynamics of carbon partitioning and rhizodeposition in wheat. Plant Physiol 134:706–715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Entry JA, Rygiewicz PT, Watrud LS, Donnelly PK (2002) Influence of adverse soil conditions on the formation and function of Arbuscular mycorrhizas. Adv Environ Res 7:123–138

    Article  CAS  Google Scholar 

  • Evans DG, Miller MH (1990) The role of the external mycelial network in the effect of soil disturbance upon vesicular—arbuscular mycorrhizal colonization of maize. New Phytol 114:65–71

    Article  Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    Article  CAS  Google Scholar 

  • Fischer H, Kuzyakov Y (2010) Sorption, microbial uptake and decomposition of acetate in soil: transformations revealed by position-specific 14C labeling. Soil Biol Biochem 42:186–192

    Article  CAS  Google Scholar 

  • Fischer H, Meyer A, Fischer K, Kuzyakov (2007) Carbohydrate and amino acid composition of dissolved organic matter leached from soil. Soil Biol Biochem 39:2926–2935

    Article  CAS  Google Scholar 

  • Fischer H, Ingwersen J, Kuzyakov Y (2010) Microbial uptake of low-molecular-weight organic substances out-competes sorption in soil. Eur J Soil Sci 61:504–513

    Article  CAS  Google Scholar 

  • Gahoonia TS, Care D, Nielsen N (1997) Root hairs and phosphorus acquisition of wheat and barley cultivars. Plant Soil 191:181–188

    Article  CAS  Google Scholar 

  • Gaiser T, Perkons U, Küpper PM, Uteau Puschmann D, Peth S, Kautz T, Pfeifer J, Ewert F, Horn R, Köpke U (2012) Evidence of improved water uptake from subsoil by spring wheat following lucerne in a temperate humid climate. Field Crop Res 126:56–62

    Article  Google Scholar 

  • Gocke M, Pustovoytov K, Kuzyakov Y (2011) Carbonate recrystallization in root-free soil and rhizosphere of Triticum aestivum and Lolium perenne estimated by 14C labeling. Biogeochemistry 103:209–222

    Article  CAS  Google Scholar 

  • Göttlein A, Hell U, Blasek R (1996) A system for microscale tensiometry and lysimetry. Geoderma 69:147–156

    Article  Google Scholar 

  • Gregory P (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12

    Article  Google Scholar 

  • Grierson C, Schiefelbein J (2002) Root hairs. Arabidopsis Book 41:1

    Google Scholar 

  • Hill PW, Farrar JF, Jones DL (2008) Decoupling of microbial glucose uptake and mineralization in soil. Soil Biol Biochem 40:616–624

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Über neue Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb Dtsch Landwirtschaftlichen Ges 98:59–78

    Google Scholar 

  • IUSS-ISRIC-FAO (2006) World reference base for soil resources. FAO, World soil resources reports 103, Rome

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Jobbagy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77

    Article  CAS  Google Scholar 

  • Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1993) Influx and efflux of amino acids from Zea mays L. roots and their implications for N nutrition and the rhizosphere. Plant Soil 155–156:87–90

    Article  Google Scholar 

  • Jones DL, Edwards AC (1998) Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol Biochem 30:1895–1902

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Jungk AO (2002) Dynamics of nutrient movement at the soil-root interface. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half, 3rd edn. M. Dekker, New York, pp 587–616

    Google Scholar 

  • Kuchenbuch R, Jungk A (1982) A method for determining concentration profiles at the soil-root interface by thin slicing rhizospheric soil. Plant Soil 68:391–394

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Demin V (1998) CO2 efflux by rapid decomposition of low molecular organic substances in soils. Sci Soil 3:11–22

    Article  Google Scholar 

  • Kuzyakov Y, Raskatov A, Kaupenjohann M (2003) Turnover and distribution of root exudates of Zea mays. Plant Soil 254:317–327

    Article  CAS  Google Scholar 

  • Li X, George E, Marschner H (1991) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48

    Article  Google Scholar 

  • Mada RJ, Bagyaraj DJ (1993) Root exudation from Leucaena leucocephala in relation to mycorrhizal colonization. World J Microbiol Biotechnol 9:342–344

    Article  CAS  PubMed  Google Scholar 

  • Marschner B, Kalbitz K (2003) Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113:211–235

    Article  CAS  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Meharg AA, Killham K (1991) A novel method of quantifying root exudation in the presence of soil microflora. Plant Soil 133:111–116

    Article  Google Scholar 

  • Merryweather JW, Fitter AH (1998) Patterns of arbuscular mycorrhiza colonisation of the roots of Hyacinthoides non-scripta after disruption of soil mycelium. Mycorrhiza 8:87–91

    Article  Google Scholar 

  • Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130

    Article  CAS  Google Scholar 

  • Nielsen JD, Jensen A (1983) Influence of vesicular-arbuscular mycorrhiza fungi on growth and uptake of various nutrients as well as uptake ratio of fertilizer P for lucerne (Medicago sativa). Plant Soil 70:165–172

    Article  CAS  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Ris E, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283

    Article  PubMed  Google Scholar 

  • Olesen T, Moldrup P, Yamaguchi T, Nissen HH, Rolston DE (2000) Modified half-cell method for measuring the solute diffusion coefficient in undisturbed, unsaturated soil. Soil Sci Soc Am J 165:835–840

    Article  CAS  Google Scholar 

  • Paterson E, Sim A (1999) Rhizodeposition and C-partitioning of Lolium perenne in axenic culture affected by nitrogen supply and defoliation. Plant Soil 216:155–164

    Article  CAS  Google Scholar 

  • Pearson JN, Jakobsen I (1993) Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytol 124:481–488

    Article  CAS  Google Scholar 

  • Rangel-Castro JI, Prosser JI, Ostle N, Scrimgeour CM, Killham K, Meharg AA (2005) Flux and turnover of fixed carbon in soil microbial biomass of limed and unlimed plots of an upland grassland ecosystem. Environ Microbiol 7:544–552

    Article  CAS  PubMed  Google Scholar 

  • Ratnayaker M, Leonard RT, Menge JA (1978) Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhial formation. New Phytol 81:543–552

    Article  Google Scholar 

  • Rattray EAS, Paterson E, Killham K (1995) Characterisation of the dynamics of C-partitioning within Lolium perenne and to the rhizosphere microbial biomass using 14C pulse chase. Biol Fertil Soils 19:280–286

    Article  Google Scholar 

  • Rovira AD (1956) Plant root excretions in relation to the rhizosphere effect. Plant Soil 7:178–194

    Article  Google Scholar 

  • Salomé C, Nunan N, Pouteau V, Lerch TZ, Chenu C (2010) Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob Chang Biol 16:416–426

    Article  Google Scholar 

  • Sanders FE, Tinker PB, Black RL, Palmerley SM (1977) The development of endomycorrhizal root systems: I. Spread of infection and growth-promoting effects with four species of vesicular-arbuscular endophyte. New Phytol 78:257–268

    Article  Google Scholar 

  • Sauer D, Kuzyakov Y, Stahr K (2006) Spatial distribution of root exudates of five plant species as assessed by 14C labeling. J Plant Nutr Soil Sci 169:360–362

    Article  CAS  Google Scholar 

  • Schenck zu Schweinsberg-Mickan M, Jörgensen RG, Müller T (2012) Rhizodeposition: its contribution to microbial growth and carbon and nitrogen turnover within the rhizosphere. J Plant Nutr Soil Sci 175:750–760

    Article  CAS  Google Scholar 

  • Schönwitz R, Ziegler H (1994) Exudation of water-soluble vitamins and of some carbohydrates by intact roots of maize seedlings (Zea mays L.) into a mineral nutrient solution. Z Pflanzenphysiol 107:7–14

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, Amsterdam

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Uren N (2007) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants, the rhizosphere. CRC Press, pp. 1–21

  • Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watt M, Silk WK, Passioura JB (2006) Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere. Ann Bot 97:839–855

    Article  PubMed Central  PubMed  Google Scholar 

  • Wichern F, Eberhardt E, Mayer J, Joergensen RG, Mueller T (2008) Nitrogen rhizodeposition in agricultural crops: methods, estimates and future prospects. Soil Biol Biochem 40:30–48

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We highly acknowledge the support of this study by the German Research Foundation (DFG) within the DFG Research group 1320 “Crop Sequences and the Nutrient Acquisition from the Subsoil”. We thank Prof. Dr. Egbert Matzner and Uwe Hell (Department of Soil Ecology, University of Bayreuth, Germany) for providing the equipment for soil solution sampling using micro suction cups. We further thank Luise Olbrecht (Research Institute Agroscope Reckenholz-Tänikon ART, Zurich, Switzerland) for the determination of root colonization by arbuscular mycorrhiza. We further thank two anonymous reviewers for constructive comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Hafner.

Additional information

Responsible Editor: Tatsuhiro Ezawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 93.9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafner, S., Wiesenberg, G.L.B., Stolnikova, E. et al. Spatial distribution and turnover of root-derived carbon in alfalfa rhizosphere depending on top- and subsoil properties and mycorrhization. Plant Soil 380, 101–115 (2014). https://doi.org/10.1007/s11104-014-2059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2059-z

Keywords

Navigation