Skip to main content

Advertisement

Log in

Carbonate recrystallization in root-free soil and rhizosphere of Triticum aestivum and Lolium perenne estimated by 14C labeling

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Under arid and semiarid conditions, pedogenic (secondary) carbonates are formed in soil by precipitation of Ca2+ from soil parent material with dissolved CO2 originating from root and rhizomicrobial respiration. δ13C values of secondary CaCO3 record the photosynthetic pathway of former vegetation and is therefore used as a tool for paleoenvironmental studies. The time scale of pedogenic carbonate formation as well as the influence of several environmental factors are crucial, yet poorly known. We estimated the recrystallization rate of pedogenic carbonate by the 14C isotopic exchange method. 14CO2 was assimilated by plants, respired into the rhizosphere and subsequently incorporated into secondary carbonate by recrystallization of primary loess carbonate. With ascending number of 14CO2 pulses, the amount of rhizosphere 14C recovered in loess CaCO3 increased linearly, leading to recrystallization rates of 3.2 × 10−5 and 2.8 × 10−5 day−1 for wheat and ryegrass, respectively. In loess close to roots, recrystallization rates more than twice as high were obtained. Extrapolating these rates we showed that several hundred years are necessary for complete recrystallization of primary loess CaCO3 in root-free substrate, assuming that both primary and secondary carbonate is recrystallized several times. In contrast, the process probably takes only decades in rhizosphere loess if carbonaceous encrustations form around the root, impeding repeated recrystallization. This indicates the importance of rhizosphere processes (e.g. respiration of roots and microorganisms, exudation) for secondary carbonate formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achyuthan H, Quade J, Roe L, Placzek C (2007) Stable isotopic composition of pedogenic carbonates from the eastern margin of the Thar Desert, Rajasthan, India. Quatern Int 162–163:50–60

    Article  Google Scholar 

  • Amundson R, Chadwick O, Sowers J, Doner H (1989) The stable isotope chemistry of pedogenic carbonates at Kyle Canyon, Nevada. Soil Sci Soc Am J 53:201–210

    Article  Google Scholar 

  • Amundson R, Wang Y, Chadwick O, Trumbore S, McFadden L, McDonald E, Wells S, DeNiro M (1994) Factors and processes governing the 14C content of carbonate in desert soils. Earth Planet Sci Lett 125:385–405

    Article  Google Scholar 

  • Bente B, Löscher M (1987) Sedimentologische, pedologische und stratigraphische Untersuchungen an Lössen südlich Heidelberg. Göttinger Geographische Abhandlungen 84:9–17

    Google Scholar 

  • Birkeland PW (1999) Soils and geomorphology. Oxford University Press, New York

    Google Scholar 

  • Boguckyi AB, Łanczont M, Łącka B, Madeyska T, Zawidzki P (2006) Stable isotopic composition of carbonates in Quaternary sediments of the Skala Podil’ska sequence (Ukraine). Quatern Int 152–153:3–13

    Article  Google Scholar 

  • Buck BJ, Monger HC (1999) Stable isotopes and soil-geomorphology as indicators of Holocene climate change, northern Chihuahuan Desert. J Arid Environ 43:357–373

    Article  Google Scholar 

  • Budd DA, Pack SM, Fogel ML (2002) The destruction of paleoclimatic isotopic signals in Pleistocene carbonate soil nodules of Western Australia. Palaeogeogr Palaeoclimatol Palaeoecol 188:249–273

    Article  Google Scholar 

  • Cerling T (1984) The stable isotopic composition of modern soil carbonate and its relation to climate. Earth Planet Sci Lett 71:229–240

    Article  Google Scholar 

  • Cerling T (1991) Carbon dioxide in the atmosphere: evidence from cenozoic and mesozoic paleosols. Am J Sci 291:377–400

    Article  Google Scholar 

  • Cerling T (1992) Use of carbon isotopes in paleosols as an indicator of the P(CO2) of the paleoatmosphere. Glob Biogeochem Cycles 6:307–314

    Article  Google Scholar 

  • Cerling T, Quade J (1993) Stable carbon and oxygen isotopes in soil carbonates. In: Swart P, Lohmann KC, McKenzie JA, Savin SM (eds) Climate change in continental isotopic records, geophysical monograph, vol 78. American Geophysical Union, Washington, DC, pp 217–231

    Google Scholar 

  • Cerling T, Quade J, Wang Y, Bowman JR (1989) Carbon isotopes in soils and palaeosols as palaeoecologic indicators. Nature 341:138–139

    Article  Google Scholar 

  • Davidson GR (1995) The stable isotopic composition and measurement of carbon in soil CO2. Geochim Cosmochim Acta 59:2485–2489

    Article  Google Scholar 

  • Deutz P, Montanez IP, Monger HC, Morrison J (2001) Morphology and isotope heterogeneity of Late Quaternary pedogenic carbonates: implications for paleosol carbonates as paleoenvironmental proxies. Palaegeogr Palaeoclimatol Palaeoecol 166:293–317

    Article  Google Scholar 

  • Durand R, Bellon N (1993) Comparaison d’une méthode de diffusion et d’une méthode géochimique pour estimer la production racinaire de CO2. Science du Sol 31:97–107

    Google Scholar 

  • Durand R, Bellon N, Jaillard B (2001) Determining the net flux of charge released by maize roots by directly measuring variations of the alkalinity in the nutrient solution. Plant Soil 229:305–318

    Article  Google Scholar 

  • Dworkin SI, Nordt L, Atchley S (2005) Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate. Earth Planet Sci Lett 237:56–68

    Article  Google Scholar 

  • Gocke M, Pustovoytov K, Kuzyakov Y (2010) Effect of CO2 concentration on the initial recrystallization rate of pedogenic carbonate—revealed by 14C and 13C labeling. Geoderma 155:351–358

    Article  Google Scholar 

  • Gollany HT, Schumacher TE, Rue RR, Liu SY (1993) A carbon dioxide microelectrode for in situ pCO2 measurement. Microchem J 48:42–49

    Article  Google Scholar 

  • Gras F (1974) Une méthode expérimentale pour la détermination du pH et de la solubilité du carbonate de calcium en sols calcaires. Bulletin de l’Association Francaise pour l’Etude du Sol 1:33–48

    Google Scholar 

  • Hatté C, Antoine P, Fontugne M, Rousseau DD, Tisnerat-Laborde N, Zöller L (1999) New chronology and organic matter δ 13C paleoclimatic significance of Nuβloch loess sequence (Rhine Valley, Germany). Quatern Int 62:85–91

    Article  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circular 347:1–32

    Google Scholar 

  • Klappa CF (1980) Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology 27:613–629

    Article  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163:421–431

    Article  Google Scholar 

  • Kuzyakov Y, Siniakina SV (2001) Siphon method of separating root-derived organic compounds from root respiration in nonsterile soil. J Plant Nutr Soil Sci 164:511–517

    Article  Google Scholar 

  • Kuzyakov Y, Ehrensberger H, Stahr K (2001) Carbon partitioning and below-ground translocation by Lolium perenne. Soil Biol Biochem 33:61–74

    Article  Google Scholar 

  • Kuzyakov Y, Raskatov AV, Kaupenjohann M (2003) Turnover and distribution of root exudates of Zea mays. Plant Soil 254:317–327

    Article  Google Scholar 

  • Kuzyakov Y, Shevtzova E, Pustovoytov K (2006) Carbonate re-crystallization in soil revealed by 14C labeling: experiment, model and significance for paleo-environmental reconstructions. Geoderma 131:45–58

    Article  Google Scholar 

  • Lal R, Kimble JM (2000) Pedogenic carbonates and the global carbon cycle. In: Lal R, Kimble JM, Stewart BA (eds) Global climate change and pedogenic carbonates. CRC/Lewis Press, Boca Raton, FL, pp 1–14

    Google Scholar 

  • Lambers H, Scheurwater I, Atkin OK (1996) Respiratory patterns in roots in relation to their functioning. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half. Marcel Dekker, New York, pp 529–556

    Google Scholar 

  • Lebedeva I, Ovechkin S (2003) Carbonate profile of East-European Chernozems. In: Soil science; aspects, problems and solutions. Proceedings of the Dokuchaev Soil Science Institute. Moscow, pp 34–55 (in Russian)

  • Lebedeva I, Tonkonogov V, Gerasimova M (2002) Geographical aspects of soil memory in mesomorphic soils of some Eurasian regions. Eur Soil Sci 35:30–41

    Google Scholar 

  • Löscher M, Zöller L (2001) Lössforschung im nordwestlichen Kraichgau. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins 83:317–326

    Google Scholar 

  • Machette M (1985) Calcic soils of the American Southwest. In: Weide D (ed) Soils and quaternary geology of the Southwestern United States. Geological Society of America Special Paper 203, pp 1–21

  • Martin JK, Merckx R (1992) The partitioning of photosynthetically fixed carbon within the rhizosphere of mature wheat. Soil Biol Biochem 24:1147–1156

    Article  Google Scholar 

  • Meharg AA, Killham K (1990) Carbon distribution within the plant and rhizosphere in laboratory and field grown Lolium perenne at different stages of development. Soil Biol Biochem 22:471–477

    Article  Google Scholar 

  • Meharg AA, Killham K (1991) A new method of quantifying root exudation in the presence of soil microflora. Plant Soil 133:111–116

    Article  Google Scholar 

  • Mensah F, Schoenau JJ, Malhi SS (2003) Soil carbon changes in cultivated and excavated land converted to grasses in east-central Saskatchewan. Biogeochemistry 63:85–92

    Article  Google Scholar 

  • Moine I, Rousseau DD, Antoine P (2005) Terrestrial molluscan records of Weichselian Lower to Middle Pleniglacial climatic changes from the Nussloch loess series (Rhine Valley, Germany): the impact of local factors. Boreas 34:363–380

    Article  Google Scholar 

  • Nordt L, Wilding L, Hallmark C, Jacob J (1996) Stable carbon isotope composition of pedogenic carbonates and their use in studying pedogenesis. In: Boutton TW, Yamasaki S (eds) Mass spectrometry of soils. Marcel Dekker, New York, pp 133–154

    Google Scholar 

  • Nye PH (1981) Changes of pH across the rhizosphere induced by roots. Plant Soil 61:7–26

    Article  Google Scholar 

  • Palta JA, Gregory PJ (1998) Drought affects the fluxes of carbon to roots and soil in 13C pulse-labelled plants of wheat. Soil Biol Biochem 29:1395–1403

    Article  Google Scholar 

  • Pendall E, Harden J, Trumbore S, Chadwick O (1994) Isotopic approach to soil dynamics and implications for paleoclimatic interpretations. Quater Res 42:60–71

    Article  Google Scholar 

  • Pustovoytov K, Leisten T (2002) Diagenetic alteration of artificial lime mortar in a Mediterranean soil: 14C and stable carbon isotopic data. In: Abstracts of the 17th World Congress of Soil Science, Bangkok, Thailand, 14–21 August 2002

  • Pustovoytov K, Terhost B (2004) An isotopic study of a late Quaternary loess-paleosol sequence in SW Germany. Revista Mexicana de Ciencias Geológicas 21(1):88–93

    Google Scholar 

  • Pustovoytov K, Schmidt K, Taubald H (2007) Evidence for Holocene environmental changes in the northern Fertile Crescent provided by pedogenic carbonate coatings. Quater Res 67:315–327

    Article  Google Scholar 

  • Royer DL, Berner RA, Beerling DJ (2001) Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth-Sci Rev 54:349–392

    Article  Google Scholar 

  • Swinnen J (1994) Evaluation of the use of a model rhizodeposition technique to separate root and microbial respiration in soil. Plant Soil 165:89–101

    Article  Google Scholar 

  • Tanner LH, Hubert JF, Coffey BP, McInerney DP (2001) Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary. Nature 411:675–677

    Article  Google Scholar 

  • Van Ginkel JA, Gorissen A, Van Deen JA (1997) Carbon and nitrogen allocation in Lolium perenne in response to elevated atmospheric CO2 with emphasis on soil carbon dynamics. Plant Soil 188:299–308

    Article  Google Scholar 

  • Wang H, Greenberg SE (2007) Reconstructing the response of C3 and C4 plants to decadal-scale climate change during the late Pleistocene in southern Illinois using isotopic analyses of calcified rootlets. Quater Res 67:136–142

    Article  Google Scholar 

  • Wang Y, McDonald E, Amundson R, McFadden L, Chadwick O (1996) An isotopic study of soils in chronological sequences of alluvial deposits, Providence Mountains, California. Geol Soc Am Bull 108:379–391

    Article  Google Scholar 

  • Whipps JM (1990) Carbon economy. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 59–97

    Google Scholar 

  • Yongliang C, Shijie H, ChunJin Z, Yumei Z, Xia Y (2001) The pH change in rhizosphere of Pinus koraiensis seedlings as affected by different nitrogen sources and its effect on phosphorus availability. J Forest Res 12:247–249

    Article  Google Scholar 

  • Zibilske LM (1994) Carbon mineralization. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (eds) Microbiological and biochemical properties. Methods of soil analysis, vol 2. SSSA Book Ser. 5. SSSA, Madison, pp 835–863

Download references

Acknowledgements

This study was financially supported by German Research Foundation (DFG) under contract KU 1184/9, which is gratefully acknowledged. We thank the HeidelbergCement AG for giving us the permission for sampling in their quarries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Gocke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gocke, M., Pustovoytov, K. & Kuzyakov, Y. Carbonate recrystallization in root-free soil and rhizosphere of Triticum aestivum and Lolium perenne estimated by 14C labeling. Biogeochemistry 103, 209–222 (2011). https://doi.org/10.1007/s10533-010-9456-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-010-9456-z

Keywords

Navigation