Skip to main content

Advertisement

Log in

Assessment of nitrate leaching loss on a yield-scaled basis from maize and wheat cropping systems

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

It is so far a gap in knowledge to assess nitrate (NO3 ) leaching loss linking with crop yield for a given cereal cropping system.

Methods

We conducted a meta-analysis on 32 published studies reporting both NO3 leaching losses and crop yields in the maize (N = 20) and wheat (N = 12) systems.

Results

On average, 22 % and 15 % of applied fertilizer N to wheat and maize systems worldwide are leached in the form of NO3 , respectively. The average area-scaled NO3 - leaching loss for maize (57.4 kg N ha−1) was approx. two times higher than for wheat (29.0 kg N ha−1). While, if scaled to crop yields, the average yield-scaled NO3 losses were comparable between maize (5.40 kg N Mg−1) and wheat (5.41 kg N Mg−1) systems. Across all sites, the lowest yield-scaled NO3 leaching losses were observed at slightly suboptimal fertilization rates, corresponding to 90 % and 96 % of maximum maize or wheat yields, respectively.

Conclusions

Our findings suggest that small adjustments of agricultural N management practices can effectively reduce yield-scaled NO3 leaching losses. However, further targeted field experiments are still needed to identify at regional scale best agricultural management practices for reducing yield-scaled NO3 leaching losses in maize and wheat systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aronsson H, Stenberg M (2010) Leaching of nitrogen from a 3-yr grain crop rotation on a clay soil. Soil Use Manag 26:274–285

    Article  Google Scholar 

  • Asadi ME, Clemente RS, Das Gupta A, Loof R, Hansen GK (2002) Impacts of fertigation via sprinkler irrigation on nitrate leaching and corn yield in an acid-sulphate soil in Thailand. Agric Water Manag 52:197–213

    Article  Google Scholar 

  • Bakhsh A, Kanwar RS, Karlen DL (2005) Effects of liquid swine manure applications on NO3-N leaching losses to subsurface drainage water from loamy soils in Iowa. Agric Ecosyst Environ 109:118–128

    Article  Google Scholar 

  • Bakhsh A, Kanwar RS, Baker JL (2010) N-application methods and precipitation pattern effects on subsurface drainage nitrate losses and crop yields. Water Air Soil Pollut 212:65–76

    Google Scholar 

  • Basso B, Ritchie JT (2005) Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize-alfalfa rotation in Michigan. Agric Ecosyst Environ 108:329–341

    Article  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  • Cassman KG, Dobermann A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31:132–140

    PubMed  Google Scholar 

  • Cassman KG, Dobermann A, Walters DT, Yang H (2003) Meeting cereal demand while protecting natural resources and improving environmental quality. Annu Rev Environ Resour 28:315–358

    Article  Google Scholar 

  • Catt JA, Howse KR, Christian DG, Lane PW, Harris GL, Goss MJ (1998) Strategies to decrease nitrate leaching in the Brimstone Farm Experiment, Oxfordshire, UK, 1988–93: the effect of straw incorporation. J Agric Sci 131:309–319

    Article  CAS  Google Scholar 

  • Claret M, Urrutia R, Ortega R, Best S, Valderrama N (2011) Quantifying nitrate leaching in irrigated wheat with different nitrogen fertilization strategies in an Alfisol. Chil J Agric Res 71:148–156

    Article  Google Scholar 

  • Conrad Y, Fohrer N (2009) Modelling of nitrogen leaching under a complex winter wheat and red clover crop rotation in a drained agricultural field. Phys Chem Earth 34:530–540

    Article  Google Scholar 

  • Dauden A, Quilez D (2004) Pig slurry versus mineral fertilization on corn yield and nitrate leaching in a Mediterranean irrigated environment. Eur J Agron 21:7–19

    Article  Google Scholar 

  • Dauden A, Quilez D, Vera MV (2004) Pig slurry application and irrigation effects on nitrate leaching in Mediterranean soil lysimeters. J Environ Qual 33:2290–2295

    Article  CAS  PubMed  Google Scholar 

  • Diez JA, Roman R, Caballero R, Caballero A (1997) Nitrate leaching from soils under a maize-wheat-maize sequence, two irrigation schedules and three types of fertilisers. Agric Ecosyst Environ 65:189–199

    Article  CAS  Google Scholar 

  • Diez JA, Hernaiz P, Munoz MJ, de la Torre A, Vallejo A (2004) Impact of pig slurry on soil properties, water salinization, nitrate leaching and crop yield in a four-year experiment in Central Spain. Soil Use Manag 20:444–450

    Article  Google Scholar 

  • Diez-Lopez JA, Hernaiz-Algarra P, Arauzo-Sanchez M, Carrasco-Martin I (2008) Effect of a nitrification inhibitor (DMPP) on nitrate leaching and maize yield during two growing seasons. Span J Agric Res 6:294–303

    Article  Google Scholar 

  • Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639

    Article  CAS  Google Scholar 

  • Fang QX, Yu Q, Wang EL, Chen YH, Zhang GL, Wang J, Li LH (2006) Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain. Plant Soil 284:335–350

    Article  CAS  Google Scholar 

  • Gallejones P, Castellon A, del Prado A, Unamunzaga O, Aizpurua A (2012) Nitrogen and sulphur fertilization effect on leaching losses, nutrient balance and plant quality in a wheat-rapeseed rotation under a humid Mediterranean climate. Nutr Cycl Agroecosyst 93:337–355

    Article  CAS  Google Scholar 

  • Gehl RJ, Schmidt JP, Stone LR, Schlegel AJ, Clark GA (2005) In situ measurements of nitrate leaching implicate poor nitrogen and irrigation management on sandy soils. J Environ Qual 34:2243–2254

    Article  CAS  PubMed  Google Scholar 

  • Gheysari M, Mirlatifi SM, Homaee M, Asadi ME, Hoogenboom G (2009) Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agric Water Manag 96:946–954

    Article  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food Security: The Challenge of Feeding 9 Billion People. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Grassini P, Cassman KG (2012) High-yield maize with large net energy yield and small global warming intensity. Proc Natl Acad Sci U S A 109:1074–1079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He B, Kanae S, Oki T, Hirabayashi Y, Yamashiki Y, Takara K (2011) Assessment of global nitrogen pollution in rivers using an integrated biogeochemical modeling framework. Water Res 45:2573–2586

    Article  CAS  PubMed  Google Scholar 

  • Huang MX, Liang T, Ou-Yang Z, Wang LQ, Zhang CS, Zhou CH (2011) Leaching losses of nitrate nitrogen and dissolved organic nitrogen from a yearly two crops system, wheat-maize, under monsoon situations. Nutr Cycl Agroecosyst 91:77–89

    Article  Google Scholar 

  • IPCC (2006) IPCC Guildelines for National Greenhouse Gas Inventories, vol. 4: Agriculture, Forestry and Other Land Use. Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan

    Google Scholar 

  • Ju XT, Christie P (2011) Calculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems: a case study on the North China Plain. Field Crop Res 124:450–458

    Article  Google Scholar 

  • Ju XT, Liu XJ, Zhang FS, Roelcke M (2004) Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China. Ambio 33(5):300–305

    PubMed  Google Scholar 

  • Ju XT, Kou CL, Zhang FS, Christie P (2006) Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain. Environ Pollut 143:117–125

    Article  CAS  PubMed  Google Scholar 

  • Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, Yin B, Christie P, Zhu ZL, Zhang FS (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci U S A 106:3041–3046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li CS, Farahbakhshazad N, Jaynes DB, Dinnes DL, Salas W, McLaughlin D (2006) Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa. Ecol Model 196:116–130

    Article  Google Scholar 

  • Li XX, Hu CS, Delgado JA, Zhang YM, Ouyang ZY (2007) Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north China plain. Agric Water Manag 89:137–147

    Article  Google Scholar 

  • Liang XQ, Xu L, Li H, He MM, Qian YC, Liu J, Nie ZY, Ye YS, Chen YX (2011) Influence of N fertilization rates, rainfall, and temperature on nitrate leaching from a rainfed winter wheat field in Taihu watershed. Phys Chem Earth 36:395–400

    Article  Google Scholar 

  • Lin BL, Sakoda A, Shibasaki R, Suzuki M (2001) A modelling approach to global nitrate leaching caused by anthropogenic fertilisation. Water Res 35:1961–1968

    Article  CAS  PubMed  Google Scholar 

  • Linquist B, van Groenigen KJ, Adviento-Borbe MA, Pittelkow C, van Kessel C (2012) An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Chang Biol 18:194–209

    Article  Google Scholar 

  • Matson PA, Vitousek PM (2006) Agricultural intensification: Will land spared from farming be land spared for nature? Conserv Biol 20:709–710

    Article  PubMed  Google Scholar 

  • Meisinger JJ, Delgado JA (2002) Principles for managing nitrogen leaching. J Soil Water Conserv 57:485–498

    Google Scholar 

  • Moreno F, Cayuela JA, Fernandez JE, FernandezBoy E, Murillo JM, Cabrera F (1996) Water balance and nitrate leaching in an irrigated maize crop in SW Spain. Agric Water Manag 32:71–83

    Article  Google Scholar 

  • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490:254–257

    Article  CAS  PubMed  Google Scholar 

  • Perego A, Basile A, Bonfante A, De Mascellis R, Terribile F, Brenna S, Acutis M (2012) Nitrate leaching under maize cropping systems in Po Valley (Italy). Agric Ecosyst Environ 147:57–65

    Article  CAS  Google Scholar 

  • Readman RJ, Beckwith CP, Kettlewell PS (2002) Effects of spray application of urea fertilizer at stem extension on winter wheat: N recovery and nitrate leaching. J Agric Sci 139:11–25

    CAS  Google Scholar 

  • Ren L, Ma JH, Zhang RD (2003) Estimating nitrate leaching with a transfer function model incorporating net mineralization and uptake of nitrogen. J Environ Qual 32:1455–1463

    Article  CAS  PubMed  Google Scholar 

  • Rivett MO, Buss SR, Morgan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42:4215–4232

    Article  CAS  PubMed  Google Scholar 

  • Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125

    Article  Google Scholar 

  • Rosenberg MS, Adams DC, Gurevitch J (2000) METAWIN, Statistical Software for Meta-Analysis, Version 2. Sinauer, Sunderland, MA

    Google Scholar 

  • Salmeron M, Cavero J, Quilez D, Isla R (2010) Winter cover crops affect monoculture maize yield and nitrogen leaching under irrigated Mediterranean conditions. Agron J 102:1700–1709

    Article  CAS  Google Scholar 

  • Sepaskhah AR, Tafteh A (2012) Yield and nitrogen leaching in rapeseed field under different nitrogen rates and water saving irrigation. Agric Water Manag 112:55–62

    Article  Google Scholar 

  • Shang QY, Yang XX, Gao CM, Wu PP, Liu JJ, Xu YC, Shen QR, Zou JW, Guo SW (2011) Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Glob Chang Biol 17:2196–2210

    Article  Google Scholar 

  • Smith P, Gregory PJ (2013) Climate change and sustainable food production. Proc Nutr Soc 72:21–28

    Article  PubMed  Google Scholar 

  • Sogbedji JM, van Es HM, Yang CL, Geohring LD, Magdoff FR (2000) Nitrate leaching and nitrogen budget as affected by maize nitrogen rate and soil type. J Environ Qual 29:1813–1820

    Article  CAS  Google Scholar 

  • Sorensen P, Rubaek GH (2012) Leaching of nitrate and phosphorus after autumn and spring application of separated solid animal manures to winter wheat. Soil Use Manag 28:1–11

    Article  Google Scholar 

  • Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 472:159–161

    Article  CAS  PubMed  Google Scholar 

  • Syswerda SP, Basso B, Hamilton SK, Tausig JB, Robertson GP (2012) Long-term nitrate loss along an agricultural intensity gradient in the Upper Midwest USA. Agric Ecosyst Environ 149:10–19

    Article  CAS  Google Scholar 

  • Tafteh A, Sepaskhah AR (2012) Yield and nitrogen leaching in maize field under different nitrogen rates and partial root drying irrigation. Int J Plant Prod 6:93–113

    CAS  Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci U S A 96:5995–6000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Groenigen JW, Velthof GL, Oenema O, Van Groenigen KJ, Van Kessel C (2010) Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur J Soil Sci 61:903–913

    Article  Google Scholar 

  • Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS (2009) Nutrient imbalances in agricultural development. Science 324:1519–1520

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Zhu B, Kuang FH (2012) Reducing interflow nitrogen loss from hillslope cropland in a purple soil hilly region in southwestern China. Nutr Cycl Agroecosyst 93:285–295

    Article  Google Scholar 

  • Weihermuller L, Siemens J, Deurer M, Knoblauch S, Rupp H, Gottlein A, Putz I (2007) In situ soil water extraction: a review. J Environ Qual 36:1735–1748

    Article  CAS  PubMed  Google Scholar 

  • Yague MR, Quilez D (2010) Response of maize yield, nitrate leaching, and soil nitrogen to pig slurry combined with mineral nitrogen. J Environ Qual 39:686–696

    Article  CAS  PubMed  Google Scholar 

  • Zavattaro L, Monaco S, Sacco D, Grignani C (2012) Options to reduce N loss from maize in intensive cropping systems in Northern Italy. Agric Ecosyst Environ 147:24–35

    Article  CAS  Google Scholar 

  • Zhang JS, Zhang FP, Yang JH, Wang JP, Cai ML, Li CF, Cao CG (2011) Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China. Agric Ecosyst Environ 140:164–173

    Article  CAS  Google Scholar 

  • Zhou MH, Zhu B, Butterbach-Bahl K, Wang T, Bergmann J, Bruggemann N, Wang ZH, Li TK, Kuang FH (2012) Nitrate leaching, direct and indirect nitrous oxide fluxes from sloping cropland in the purple soil area, southwestern China. Environ Pollut 162:361–368

    Article  CAS  PubMed  Google Scholar 

  • Zhou MH, Zhu B, Butterbach-Bahl K, Zheng XH, Wang T, Wang YQ (2013) Nitrous oxide emissions and nitrate leaching from a rain-fed wheat-maize rotation in the Sichuan Basin, China. Plant Soil 326:149–159

    Article  Google Scholar 

  • Zhu B, Wang T, Kuang FH, Luo ZX, Tang JL, Xu TP (2009) Measurements of nitrate leaching from a hillslope cropland in the central Sichuan basin. China Soil Sci Soc Am J 73:1419–1426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was gratefully supported by the Natural Science Foundation of China (Grant No. 41271321), the Helmholtz-CAS Joint Laboratory ENTRANCE and is part of the Climate Change, Agriculture and Food Security programme (CCAFS) of CGIAR institutes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Butterbach-Bahl.

Additional information

Responsible Editor: Zucong Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M., Butterbach-Bahl, K. Assessment of nitrate leaching loss on a yield-scaled basis from maize and wheat cropping systems. Plant Soil 374, 977–991 (2014). https://doi.org/10.1007/s11104-013-1876-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1876-9

Keywords

Navigation