Skip to main content
Log in

Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Arbuscular mycorrhizal fungi (AMF) can control root-knot nematode infection, but the mode of action is still unknown. We investigated the effects of AMF and mycorrhizal root exudates on the initial steps of Meloidogyne incognita infection, namely movement towards and penetration of tomato roots.

Methods

M. incognita soil migration and root penetration were evaluated in a twin-chamber set-up consisting of a control and mycorrhizal (Glomus mosseae) plant compartment (Solanum lycopersicum cv. Marmande) connected by a bridge. Penetration into control and mycorrhizal roots was also assessed when non-mycorrhizal or mycorrhizal root exudates were applied and nematode motility in the presence of the root exudates was tested in vitro.

Results

M. incognita penetration was significantly reduced in mycorrhizal roots compared to control roots. In the twin-chamber set-up, equal numbers of nematodes moved to both compartments, but the majority accumulated in the soil of the mycorrhizal plant compartment, while for the control plants the majority penetrated the roots. Application of mycorrhizal root exudates further reduced nematode penetration in mycorrhizal plants and temporarily paralyzed nematodes, compared with application of water or non-mycorrhizal root exudates.

Conclusions

Nematode penetration was reduced in mycorrhizal tomato roots and mycorrhizal root exudates probably contributed at least partially by affecting nematode motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhtar MS, Siddiqui ZA (2008) Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer Science + Business Media, pp 61–97

  • Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens—an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Prithiviraj B, Jha AK, Ausubel FM, Vivanco JM (2005) Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature 434:217–221

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Bird AF (1960) Additional notes on the attractiveness of roots to plant parasitic nematodes. Nematologica 5:217

    Article  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • Curtis RHC, Robinson AF, Perry RN (2009) Hatch and host location. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CAB International, Wallingford, pp 139–162

    Chapter  Google Scholar 

  • Dababat A, Sikora RA (2007) Influence of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and invasion. Nematology 9:771–776

    Article  Google Scholar 

  • Declerck S, Laloux S, Sarah JL, Delvaux B (1998) Application of a flowing solution culture technique to study the parasitic fitness of the nematode Radopholus similis on banana plantlets under two different nitrogen nutrient regimes. Plant Pathol 47:580–585

    Article  Google Scholar 

  • Dong LQ, Zhang KQ (2006) Microbial control of plant-parasitic nematodes: a five-party interaction. Plant Soil 288:31–45

    Article  CAS  Google Scholar 

  • Edens RM, Anand SC, Bolla RI (1995) Enzymes of the phenylpropanoid pathway in soybean infected with Meloidogyne incognita or Heterodera glycines. J Nematol 27:292–303

    PubMed  CAS  Google Scholar 

  • Elsen A, Gervacio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256

    Article  PubMed  CAS  Google Scholar 

  • Fillion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533

    Article  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A, Gianinazzi S (1996) Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 133:45–57

    Article  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    Article  PubMed  CAS  Google Scholar 

  • Hodge A (2000) Microbial ecology of the arbuscular mycorrhiza. FEMS Micobiol Ecol 32:91–96

    Article  CAS  Google Scholar 

  • Hol WHG, Cook R (2005) An overview of arbuscular mycorrhizal fungi-nematode interactions. Basic Appl Ecol 6:489–503

    Article  Google Scholar 

  • Hooper DJ, Hallman J, Subbotin S (2005) Methods for extraction, processing and detection of plant and soil nematodes. In: Luc M, Sikora R, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture, 2nd edn. CABI, Wallingford, pp 53–86

    Chapter  Google Scholar 

  • Hubbard JE, Flores-Lara Y, Schmitt M, McClure MA, Stock SP, Hawes MC (2005) Increased penetration of host roots by nematodes after recovery from quiescence induced by root cap exudates. Nematology 7:321–331

    Article  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Koltai H, Sharon E, Spiegel Y (2002) Root-nematode interactions: recognition and pathogenicity. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots, the hidden half, 3rd edn. Marcel Dekker, New York, pp 933–947

    Google Scholar 

  • Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, Zheng CC (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47:154–163

    Article  PubMed  CAS  Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40:2217–2224

    Article  CAS  Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2009) Role of the modification in root exudation induced by arbuscular mycorrhizal colonization on the intraradical growth of Phytophthora nicotianae in tomato. Mycorrhiza 19:443–448

    Article  PubMed  CAS  Google Scholar 

  • Marschner P, Baumann K (2003) Changes in bacterial community structure induced by mycorrhizal colonization in split-root maize. Plant Soil 251:279–289

    Article  CAS  Google Scholar 

  • McArthur DAJ, Knowles NR (1992) Resistance responses of potato to vesicular-arbuscular mycorrhizal fungi under varying abiotic phosphorus levels. Plant Physiol 100:341–351

    Article  PubMed  CAS  Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions and their potential role in biological control. Plant Soil 185:241–251

    Article  CAS  Google Scholar 

  • Norman JR, Hooker JE (2000) Sporulation of Phytophthora fragariae shows greater stimulation by exudates of non-mycorrhizal than by mycorrhizal strawberry roots. Mycol Res 104:1069–1073

    Article  Google Scholar 

  • Pegard A, Brizzard G, Fazari A, Soucaze O, Abad P, Djian-Caporalino C (2005) Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum. Phytopathol 95:158–165

    Article  CAS  Google Scholar 

  • Perry RN (2005) An evaluation of types of attractants enabling plant-parasitic nematodes to locate plant roots. Russ J Nematol 13:83–88

    Google Scholar 

  • Pinior A, Wyss U, Piché Y, Vierheilig H (1999) Plants colonized by AM fungi regulate further root colonization by AM fungi through altered root exudation. Can J Bot 77:891–897

    Google Scholar 

  • Pinochet J, Calvet C, Camprubi A, Fernandez C (1996) Interactions between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops: a review. Plant Soil 185:183–190

    Article  CAS  Google Scholar 

  • Plenchette C, Morel C (1996) External phosphorus requirements of mycorrhizal and non-mycorrhizal barley and soybean plants. Biol Fertil Soils 21:303–308

    Article  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unravelling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  PubMed  CAS  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defense responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  PubMed  CAS  Google Scholar 

  • Ryan NA, Duffy EM, Cassells AC, Jones PW (2000) The effect of mycorrhizal fungi on the hatch of potato cyst nematodes. Appl Soil Ecol 15:233–240

    Article  Google Scholar 

  • Scheffknecht S, Mammerler R, Steinkellner S, Vierheilig H (2006) Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants. Mycorrhiza 16:365–370

    Article  PubMed  CAS  Google Scholar 

  • Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences. McGraw-Hill Book Co, New York

    Google Scholar 

  • Sikora RA, Pocasangre L, zum Felde A, Niere B, Vu TT, Dababat AA (2008) Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biol Control 46:15–23

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Sood SG (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45:219–227

    Article  Google Scholar 

  • Speijer PR, De Waele D (1997) Screening of Musa germplasm for resistance and tolerance to nematodes. INIBAP Technical guidelines, nr. 1. INIBAP, Montpellier

    Google Scholar 

  • Spence KO, Lewis EE, Perry RN (2008) Host-finding and invasion by entomopathogenic and plant-parasitic nematodes: evaluating the ability of laboratory bioassays to predict field results. J Nematol 40:93–98

    PubMed  Google Scholar 

  • St-Arnaud M, Vujanovic V (2007) Effect of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In: Hamel C, Plenchette C (eds) Mycorrhizae in crop production: applying knowledge. Haworth, New York, pp 67–122

    Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306

    Article  PubMed  CAS  Google Scholar 

  • Vierheilig H, Piché Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. Adv Exp Med Biol 505:23–29

    PubMed  CAS  Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    PubMed  CAS  Google Scholar 

  • Vierheilig H, Lerat S, Piché Y (2003) Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by Glomus mosseae. Mycorrhiza 13:167–170

    Article  PubMed  CAS  Google Scholar 

  • Vierheilig H, Steinkellner S, Khaosaad T, Garcia-Garrido GM (2008) The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of AM symbiosis: one mechanism, two effects? In: Varma A (ed) Mycorrhiza: genetics and molecular biology—Eco-function—Biotechnology—Eco-physiology—Structure and systematics. Springer, Berlin, pp 307–320

    Google Scholar 

  • Vivanco JM, Guimaraes RL, Flores HE (2002) Underground plant metabolism: the biosynthetic potential of roots. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots, the hidden half, 3rd edn. Marcel Dekker, New York, pp 1045–1070

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  PubMed  CAS  Google Scholar 

  • Wamberg C, Christensen S, Jakobsen I, Muller AK, Sørensen SJ (2003) The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem 35:1349–1357

    Article  CAS  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wuyts N, Lognay G, Swennen R, De Waele D (2006a) Nematode infection and reproduction in transgenic and mutant Arabidopsis and tobacco with an altered phenylpropanoid metabolism. J Exp Bot 57:2825–2835

    Article  PubMed  CAS  Google Scholar 

  • Wuyts N, Swennen R, De Waele D (2006b) Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology 8:89–101

    Article  CAS  Google Scholar 

  • Wuyts N, Zin Thu Zar M, Swennen R, De Waele D (2006c) Banana rhizodeposition: characterization of root border cell production and effects on chemotaxis and motility of the parasitic nematode Radopholus similis. Plant Soil 283:217–228

    Article  CAS  Google Scholar 

  • Zhao X, Schmitt M, Hawes MC (2000) Species-dependent effects of border cell and root tip exudates on nematode behavior. Plant Pathol 90:1239–1245

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Nicole Viaene from the Institute for Agricultural and Fisheries Research (ILVO), Belgium, for valuable comments on the manuscript. This work was supported by a specialization grant from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) to C. Vos and a VLIR-UDC grant from the Belgian Government to R. Mkandawire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Vos.

Additional information

Responsible Editor: Thom W. Kuyper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vos, C., Claerhout, S., Mkandawire, R. et al. Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil 354, 335–345 (2012). https://doi.org/10.1007/s11104-011-1070-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-1070-x

Keywords

Navigation