Skip to main content

Advertisement

Log in

Goethite Dissolution in the Presence of Phytosiderophores: Rates, Mechanisms, and the Synergistic Effect of Oxalate

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The purpose of this study was the elucidation of the chemical mechanism of an important process in iron acquisition by graminaceous plants: the dissolution of iron oxides in the presence of phytosiderophores. We were particularly interested in the effects of diurnal root exudation of phytosiderophores and of the presence of other organic ligands in the rhizosphere of graminaceous plants on the dissolution mechanism.

Phytosiderophores of the type 2′-deoxymugineic acid (DMA) were purified from the root exudates of wheat plants (Triticum aestivum L. cv. Tamaro). DMA-promoted dissolution of goethite under steady-state and non-steady-state conditions and its dependence on pH, adsorbed DMA concentration, and the presence of the organic ligand oxalate were studied. We show that dissolution of goethite by phytosiderophores follows a surface controlled ligand promoted dissolution mechanism. We also found that oxalate, an organic ligand commonly found in rhizosphere soils, has a synergistic effect on the steady-state dissolution of goethite by DMA. Under non-steady-state addition of the phytosiderophore, mimicking the diurnal exudation pattern of phytosiderophore release, a fast dissolution of iron is triggered in the presence of oxalate.

To investigate the efficiency of these mechanisms in plant iron acquisition, wheat plants were grown on a substrate amended with goethite as only iron source. The chlorophyll status of these plants was similar to iron-fertilized plants and significantly higher than in plants grown in iron free nutrient solutions. This demonstrates that wheat can efficiently mobilize iron, even from well crystalline goethite that is usually considered unavailable for plant nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S Alam F Akiha S Kamei S Kawai (2004) ArticleTitleDiurnal variations in absorption and translocation of a ferrated phytosiderophore in barley as affected by iron deficiency J. Soil Sci. Plant Nutr. 50 457–461 Occurrence Handle1:CAS:528:DC%2BD2cXmtFyitb0%3D

    CAS  Google Scholar 

  • F Awad V Römheld H Marschner (1994) ArticleTitleEffect of root exudates on mobilization in the rhizosphere and uptake of iron by wheat plants Plant and Soil 165 213–218 Occurrence Handle10.1007/BF00008064 Occurrence Handle1:CAS:528:DyaK2MXjtF2isb0%3D

    Article  CAS  Google Scholar 

  • I Bertrand P Hinsinger (2000) ArticleTitleDissolution of iron oxyhydroxide in the rhizosphere of various crop species J. Plant Nutr. 23 1559–1577 Occurrence Handle1:CAS:528:DC%2BD3MXhs1Wkug%3D%3D

    CAS  Google Scholar 

  • S F Cheah S M Kraemer J Cervini-Silva G Sposito (2003) ArticleTitleSteady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron Chem. Geol. 198 63–75 Occurrence Handle10.1016/S0009-2541(02)00421-7 Occurrence Handle1:CAS:528:DC%2BD3sXjt1elsLk%3D

    Article  CAS  Google Scholar 

  • R M Cornell U Schwertmann (2003) The Iron Oxides Wiley-VCH Weinheim

    Google Scholar 

  • F D Dakora D A Phillips (2002) ArticleTitleRoot exudates as mediators of mineral acquisition in low-nutrient environments Plant and Soil 245 35–47 Occurrence Handle10.1023/A:1020809400075 Occurrence Handle1:CAS:528:DC%2BD38XnvVCit70%3D

    Article  CAS  Google Scholar 

  • P R Darrah (1991) ArticleTitleModels of the rhizosphere. 1. Microbial-population dynamics around a root releasing soluble and insoluble carbon Plant and Soil 133 187–199 Occurrence Handle10.1007/BF00009191 Occurrence Handle1:CAS:528:DyaK3MXkslSnsLk%3D

    Article  CAS  Google Scholar 

  • M J Eick J D Peak W D Brady (1999) ArticleTitleThe effect of oxyanions on the oxalate-promoted dissolution of goethite Soil Sci. Soc. Am. J. 63 1133–1141 Occurrence Handle1:CAS:528:DyaK1MXns12mur8%3D Occurrence Handle10.2136/sssaj1999.6351133x

    Article  CAS  Google Scholar 

  • T W M Fan A N Lane J Pedler D Crowley R M Higashi (1997) ArticleTitleComprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography mass spectrometry Anal. Biochem. 251 57–68 Occurrence Handle10.1006/abio.1997.2235 Occurrence Handle1:CAS:528:DyaK2sXlslegu7g%3D Occurrence Handle9300083

    Article  CAS  PubMed  Google Scholar 

  • J D Filius T Hiemstra W H Riemsdijk Particlevan (1997) ArticleTitleAdsorption of small weak organic acids on goethite: Modeling of mechanisms J. Colloid Interf. Sci. 195 368–380 Occurrence Handle1:CAS:528:DyaK1cXjtF2gsQ%3D%3D

    CAS  Google Scholar 

  • G Furrer W Stumm (1986) ArticleTitleThe coordination chemistry of weathering: 1 Dissolution kinetics of δ-Al2O3 and BeO Geochim. Cosmochim. Acta 50 1847–1860 Occurrence Handle10.1016/0016-7037(86)90243-7 Occurrence Handle1:CAS:528:DyaL28XlsFKgtbg%3D

    Article  CAS  Google Scholar 

  • Gadd G M 2000 Heterotrophic solubilization of metal-bearing minerals by fungi. In Environmental Mineralogy. Eds. J D Cotter-Howells, D L S Campbell, E Valsami-Jones and M Batchelder. pp 57–75. The Mineralogical Society, London

  • H T Gollany T E Schumacher R R Rue S-Y Liu (1993) ArticleTitleA carbon dioxide microelectrode for in situ pCO2 measurement Microchem. J. 48 42–49 Occurrence Handle10.1006/mchj.1993.1069 Occurrence Handle1:CAS:528:DyaK3sXlvFCmt7k%3D

    Article  CAS  Google Scholar 

  • W C Graustein K Cromack (1977) ArticleTitleCalcium oxalate: Occurrence in soils and effect on nutrient and geochemical cycles Science 198 1252–1254 Occurrence Handle1:CAS:528:DyaE1cXkvFGjsg%3D%3D Occurrence Handle17741705

    CAS  PubMed  Google Scholar 

  • J Hagström W M James K R Skene (2001) ArticleTitleA comparison of structure, development and function in cluster roots of Lupinus albus L. under phosphate and iron stress Plant and Soil 232 81–90 Occurrence Handle10.1023/A:1010334003073

    Article  Google Scholar 

  • K Higuchi K Suzuki H Nakanishi H Yamaguchi N K Nishizawa S Mori (1999) ArticleTitleCloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores Plant Physiol. 119 471–479 Occurrence Handle10.1104/pp.119.2.471 Occurrence Handle1:CAS:528:DyaK1MXhsFSlu7s%3D Occurrence Handle9952442

    Article  CAS  PubMed  Google Scholar 

  • K Higuchi S Watanabe M Takahashi S Kawasaki H Nakanishi N K Nishizawa S Mori (2001) ArticleTitleNicotianamine synthase gene expression doffers in barley and rice under Fe-deficient conditions Plant J. 25 159–167 Occurrence Handle10.1046/j.1365-313x.2001.00951.x Occurrence Handle1:CAS:528:DC%2BD3MXhtlalsro%3D Occurrence Handle11169192

    Article  CAS  PubMed  Google Scholar 

  • S Hiradate K Inoue (1998) ArticleTitleDissolution of iron from iron (hydr)oxides by mugineic acid Soil Sci. Plant Nutr. 44 305–313 Occurrence Handle1:CAS:528:DyaK1cXmtlyjtbo%3D

    CAS  Google Scholar 

  • K Inoue S Hiradate S Takagi (1993) ArticleTitleInteraction of mugineic acid with synthetically produced iron-oxides Soil Sci. Soc. Am. J. 57 1254–1260 Occurrence Handle1:CAS:528:DyaK2cXhs1akur0%3D

    CAS  Google Scholar 

  • D L Jones (1998) ArticleTitleOrganic acids in the rhizosphere – a critical review Plant and Soil 205 25–44 Occurrence Handle10.1023/A:1004356007312 Occurrence Handle1:CAS:528:DyaK1MXhtlGjs78%3D

    Article  CAS  Google Scholar 

  • D L Jones D S Brassington (1998) ArticleTitleSorption of organic acids in acid soils and its implications in the rhizosphere Europ. J. Soil Sci. 49 447–455 Occurrence Handle1:CAS:528:DyaK1cXmtF2ktL8%3D

    CAS  Google Scholar 

  • D L Jones P R Darra L V Kochian (1996) ArticleTitleCritical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron upake Plant and Soil 180 57–66 Occurrence Handle10.1007/BF00015411 Occurrence Handle1:CAS:528:DyaK28XltFWgsLg%3D

    Article  CAS  Google Scholar 

  • S M Kraemer (2004) ArticleTitleIron oxide dissolution and solubility in the presence of siderophores Aquat. Sci. 66 3–18 Occurrence Handle1:CAS:528:DC%2BD2cXjslGksLk%3D

    CAS  Google Scholar 

  • S M Kraemer S F Cheah R Zapf K N Raymond G Sposito (1999) ArticleTitleEffect of hydroxamate siderophores on Fe release and Pb(II) adsorption by goethite Geochim. Cosmochim. Acta 63 3003–3008 Occurrence Handle10.1016/S0016-7037(99)00227-6 Occurrence Handle1:CAS:528:DyaK1MXotVClt7c%3D

    Article  CAS  Google Scholar 

  • E C Large (1954) ArticleTitleGrowth stages in cereals Plant Pathol. 3 128–129

    Google Scholar 

  • W L Lindsay (1979) Chemical Equilibria in Soils Wiley Interscience New York

    Google Scholar 

  • J F Ma K Nomoto (1996) ArticleTitleEffective regulation of iron acquisition in graminaceous plants The role of mugineic acids as phytosiderophores Physiol. Plant. 97 609–617 Occurrence Handle10.1034/j.1399-3054.1996.970325.x Occurrence Handle1:CAS:528:DyaK28Xktl2gt7w%3D

    Article  CAS  Google Scholar 

  • J F Ma T Shinada C Matsuda K Nomoto (1995) ArticleTitleBiosynthesis of phytosiderophores, mugineic acids, associated with methionine cycling J. Biol. Chem. 270 16549–16554 Occurrence Handle1:CAS:528:DyaK2MXmvFOksLk%3D Occurrence Handle7622460

    CAS  PubMed  Google Scholar 

  • JF Ma H Ueno D Ueno A D Rombolà T Iwashita (2003) ArticleTitleCharacterization of phytosiderophore secretion under Fe deficiency stress in Festuca rubra Plant and Soil 256 131–137 Occurrence Handle10.1023/A:1026285813248 Occurrence Handle1:CAS:528:DC%2BD3sXot1Clsrs%3D

    Article  CAS  Google Scholar 

  • H Marschner (1995) Mineral Nutrition of Higher Plants EditionNumber2nd Academic Press London

    Google Scholar 

  • H Marschner V Römheld M Kissel (1986) ArticleTitleDifferent strategies in higher-plants in mobilization and uptake of iron J. Plant Nutr. 9 695–713 Occurrence Handle1:CAS:528:DyaL28XkslOqsbo%3D

    CAS  Google Scholar 

  • H Marschner V Römheld M Kissel (1987) ArticleTitleLocalization of phytosiderophore release and of iron uptake along intact barley roots Phys. Plant. 71 157–162 Occurrence Handle1:CAS:528:DyaL1cXhs1Cqtbs%3D

    CAS  Google Scholar 

  • A E Martel R M Smith R J Motekaitis (2001) NIST Critically selected Stability Constants of Metal Complexes. NIST Standard reference database 46 NumberInSeriesVersion 6.0, Gaithersburg NIST

    Google Scholar 

  • A Matar J Torrent J Ryan (1992) ArticleTitleSoil and fertilizer phosphorous and crop responses in the dryland mediterranean zone Adv. Soil Sci. 18 81–146 Occurrence Handle1:CAS:528:DyaK38XltFSlurs%3D

    CAS  Google Scholar 

  • R Moran (1982) ArticleTitleFormulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide Plant Physiol. 69 1376–1381 Occurrence Handle1:CAS:528:DyaL38XltVKntb0%3D Occurrence Handle16662407

    CAS  PubMed  Google Scholar 

  • S Mori (1994) Mechanism of iron acquisition by graminaceous (strategy II) plants J A Manthey D E Crowley D G Luster (Eds) Biochemistry of Metal Micronutrients in the Rhizosphere Lewis Boca Raton 225–249

    Google Scholar 

  • Murakami T, Ise K, Hayakawa M, Kamei S, Takagi S, 1989 Stabilities of Metal Complexes of Mugineic acids and their specific affinities for iron (III). Chem Lett. 2137–2140

  • H Nakanishi N Bughio S Matsuhashi N Ishioka H Uchida A Tsuji A Osa T Sekine T Kume S Mori (1999) ArticleTitleVisualizing real time [11C]methionine translocation in Fe-sufficient and Fe-deficient barley using a positron emitting tracer imaging system (PETIS) J. Exp. Bot. 50 637–643 Occurrence Handle10.1093/jexbot/50.334.637 Occurrence Handle1:CAS:528:DyaK1MXjsFSjur0%3D

    Article  CAS  Google Scholar 

  • T Negishi H Nakanishi J Yazaki N Kishimoto F Fujii K Shimbo K Yamamoto K Sakata T Sasaki S Kikuchi S Mori N K Nishizawa (2002) ArticleTitlecDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots Plant J. 30 83–94 Occurrence Handle10.1046/j.1365-313X.2002.01270.x Occurrence Handle1:CAS:528:DC%2BD38XjvFGgsro%3D Occurrence Handle11967095

    Article  CAS  PubMed  Google Scholar 

  • G Neumann C Haake V Römheld (1999) ArticleTitleImproved HPLC method for determination of phytosiderophores in root washings and tissue extracts J. Plant Nutr. 22 1389–1402 Occurrence Handle1:CAS:528:DyaK1MXlt1Gqtrk%3D

    CAS  Google Scholar 

  • B Nowack L Sigg (1997) ArticleTitleDissolution of Fe(III)(hydr)oxides by metal-EDTA complexes Geochim. Cosmochim. Acta 61 951–963 Occurrence Handle1:CAS:528:DyaK2sXhvVGksLo%3D

    CAS  Google Scholar 

  • VB Parker IL Khodakovskii (1995) ArticleTitleThermodynamic properties of The aqueous ions (2+ and 3+) of iron and The key Compounds of iron J. Phys. Chem. Ref. Data 24 1699–1745 Occurrence Handle1:CAS:528:DyaK28XislGhsQ%3D%3D

    CAS  Google Scholar 

  • Parkhurst D L and Appelo C A J 1999 Users Guide to PhreeqC␣(Version 2) – A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report, Denver, Colorado 99–4259

  • Reichard P U 2005 Effects of microbial and plant siderophore ligands on the dissolution of iron oxides. Ph.D. Thesis # 15665 Swiss Federal Institute of Technology, Zurich, Switzerland

  • Z Rengel (2002) ArticleTitleChelator EDTA in nutrient solution decreases growth of wheat J. Plant Nutr. 25 1709–1725 Occurrence Handle10.1081/PLN-120006053 Occurrence Handle1:CAS:528:DC%2BD38Xmtl2ltL8%3D

    Article  CAS  Google Scholar 

  • V Römheld (1991) ArticleTitleThe role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: An ecological approach Plant and Soil 130 127–134 Occurrence Handle10.1007/BF00011867

    Article  Google Scholar 

  • V Römheld H Marschner (1986) ArticleTitleEvidence for a specific uptake system for iron phytosiderophores in roots of grasses Plant Physiol. 80 175–180 Occurrence Handle16664577

    PubMed  Google Scholar 

  • S D Samson CM Eggleston (2000) ArticleTitleThe depletion and regeneration of dissolution-active sites at the mineral-water interface: II. Regeneration of active sites on α-Fe2O3 at pH 3 and pH 6. Geochim Cosmochim. Acta 64 3675–3683 Occurrence Handle1:CAS:528:DC%2BD3cXnsFWhu74%3D

    CAS  Google Scholar 

  • G Schwarzenbach K Schwarzenbach (1963) ArticleTitleHydroxamatkomplexe. 1. Die Stabilität der Eisen(III)-Komplexe einfacher Hydroxamsäuren und des Ferrioxamins B Helvet. Chim. Acta 46 1390–1400 Occurrence Handle1:CAS:528:DyaF2cXktV2gt7g%3D

    CAS  Google Scholar 

  • U Schwertmann R M Cornell (2000) Iron Oxides in the Laboratory: Preparation and Characterization Wiley-VCH Weinheim

    Google Scholar 

  • K Singh T Sasakuma N Bughio M Takahashi H Nakanishi E Yoshimura N K Nishizawa S Mori (2000) ArticleTitleAbility of ancestral wheat species to secrete mugineic acid family phytosiderophores in response to iron deficiency J. Plant Nutr. 23 1973–1981 Occurrence Handle1:CAS:528:DC%2BD3MXhs1aitg%3D%3D

    CAS  Google Scholar 

  • G Sposito (1989) The chemistry of soils Oxford University Press Oxford

    Google Scholar 

  • J D Stewart V J Lieffers (1994) ArticleTitleDiurnal cycles of rhizosphere acidification by Pinus contorta seedlings Plant and Soil 162 299–302 Occurrence Handle10.1007/BF01347717

    Article  Google Scholar 

  • B W Strobel (2001) ArticleTitleInfluence of vegetation on low-molecular-weight carboxylic acids in soil solution – a review Geoderma 99 169–198 Occurrence Handle10.1016/S0016-7061(00)00102-6 Occurrence Handle1:CAS:528:DC%2BD3MXkslGnsQ%3D%3D

    Article  CAS  Google Scholar 

  • W Stumm (1992) Chemistry of the Solid-Water Interface Wiley-Interscience New York

    Google Scholar 

  • W Stumm B Sulzberger J Sinninger (1990) ArticleTitleThe coordination chemistry of oxide-electrolyte interface; the dependence of surface reactivity (dissolution, redox reactions) on surface structures Croat. Chem. Acta 63 277–312 Occurrence Handle1:CAS:528:DyaK3MXhvFClsb8%3D

    CAS  Google Scholar 

  • Y Sugiura K Nomoto (1984) ArticleTitlePhytosiderophores - structures and properties of mugineic acids and their metal complexes Struct. Bond. 58 107–135 Occurrence Handle1:CAS:528:DyaL2MXht1yktrc%3D

    CAS  Google Scholar 

  • S Takagi (1991) Mugineic acids as example of root exudates which play an important role in nutrient uptake by plant roots C Johansen KK Lee K L Sahrawat (Eds) Phosphorus Nutrition of Grain Legumes in the Semi-Arid Tropics ICRISAT Patancheru 77–90

    Google Scholar 

  • S Takagi (1993) Production of phytosiderophores LL Barton BC Hemming (Eds) Iron Chelation in Plants and Soil Microorganisms Academic Press San Diego 111–131

    Google Scholar 

  • S Takagi K Nomoto T Takemoto (1984) ArticleTitlePhysiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants J. Plant Nutr. 7 469–477 Occurrence Handle1:CAS:528:DyaL2cXlt12lt7c%3D

    CAS  Google Scholar 

  • S Takagi S Kamei M Yu (1988) ArticleTitleEfficiency of iron extraction from soil by mugineic acid family phytosiderophores J. Plant Nutr. 11 643–651 Occurrence Handle1:CAS:528:DyaL1cXmt12nurw%3D Occurrence Handle10.1080/01904168809363830

    Article  CAS  Google Scholar 

  • V Vančura (1964) ArticleTitleRoot exudates of plants Plant and Soil 21 231–248

    Google Scholar 

  • N Wirén ParticleVon H Khodr RC Hider (2000) ArticleTitleHydroxylated Phytosiderophore Species Possess an enhanced Chelate Stability and affinity for iron (III) Plant Physiol 124 1149–1157

    Google Scholar 

  • C F Whitehead (Eds) (2003) (Amino)carboxylate coordination reactions with ferric (hydr)oxides: Adsorption and ligand-assisted dissolution Johns Hopkins University Baltimore, USA

    Google Scholar 

  • Z Yehuda M Shenker V Römheld H Marschner Y Hadar Y N Chen (1996) ArticleTitleThe role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants Plant Phys. 112 1273–1280 Occurrence Handle1:CAS:528:DyaK28XntVahu7k%3D

    CAS  Google Scholar 

  • Q Y Yu A Kandegedara Y Xu D B Rorabacher (1997) ArticleTitleAvoiding interferences from Good’s buffers: A contiguous series of non-complexing tertiary amine buffers covering the entire range of pH 3–11 Anal. Biochem. 253 50–56 Occurrence Handle10.1006/abio.1997.2349 Occurrence Handle1:CAS:528:DyaK2sXnsVegtr8%3D Occurrence Handle9356141

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.M. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichard, P., Kraemer, S., Frazier, S. et al. Goethite Dissolution in the Presence of Phytosiderophores: Rates, Mechanisms, and the Synergistic Effect of Oxalate. Plant Soil 276, 115–132 (2005). https://doi.org/10.1007/s11104-005-3504-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-005-3504-9

Key words

Navigation