Skip to main content
Log in

Improved molecular tools for sugar cane biotechnology

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Basnayake SWV, Morgan TC, Wu L, Birch RG (2012) Field performance of transgenic sugarcane expressing isomaltulose synthase. Plant Biotechnol J 10:217–225

    Google Scholar 

  • Beyene G, Buenrostro-Nava MT, Damaj MB, Gao SJ, Molina J, Mirkov TE (2011) Unprecedented enhancement of transient gene expression from minimal cassettes using a double terminator. Plant Cell Rep 30:13–25

    Article  CAS  PubMed  Google Scholar 

  • Birch RG, Bower R, Elliott AR, Potier BAM, Franks T, Cordeiro G (1996) Expression of foreign genes in sugarcane. In: Cock JH, Brekelbaum T (eds) Proceedings of the International Society of Sugarcane Technology, XXII Congress. Tecnicana, Cali, pp 368–373

  • Birch RG, Bower RS, Elliott AR (2010) Highly efficient, 5′ sequence-specific transgene silencing in a complex polyploidy. Trop Plant Biol 3:88–97

    Article  CAS  Google Scholar 

  • Braithwaite KS, Geijskes RJ, Smith GR (2004) A variable region of the sugarcane bacilliform virus (SCBV) genome can be used to generate promoters for transgene expression in sugarcane. Plant Cell Rep 23:319–326

    Article  CAS  PubMed  Google Scholar 

  • Callis J, Fromm M, Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Dev 1:1183–1200

    Article  CAS  PubMed  Google Scholar 

  • Casu RE, Grof CPL, Rae AL, McIntyre CL, Dimmock CM, Manners JM (2003) Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Mol Biol 52:371–386

    Article  CAS  PubMed  Google Scholar 

  • Casu RE, Dimmock CM, Chapman SC, Grof CPL, McIntyre CL, Bonnett GD, Manners JM (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol 54:503–517

    Article  PubMed  Google Scholar 

  • Casu RE, Jarmey JM, Bonnett GD, Manners JM (2007) Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by Affymetrix GeneChip Sugarcane Genome Array expression profiling. Funct Integr Genomics 7:153–167

    Article  CAS  PubMed  Google Scholar 

  • Christie M, Croft LJ, Carroll BJ (2011) Intron splicing suppresses RNA silencing in Arabidopsis. Plant J 68:159–167

    Article  CAS  PubMed  Google Scholar 

  • Christy LA, Arvinth S, Saravanakumar M, Kanchana M, Mukunthan N, Srikanth J, Thomas G, Subramonian N (2009) Engineering sugarcane cultivars with bovine pancreatic trypsin inhibitor (aprotinin) gene for protection against top borer (Scirpophaga excerptalis Walker). Plant Cell Rep 28:175–184

    Article  CAS  PubMed  Google Scholar 

  • Damaj MB, Kumpatla SP, Emani C, Beremand PD, Reddy AS, Rathore KS, Buenrostro-Nava MT, Curtis IS, Thomas TL, Mirkov TE (2010) Sugarcane DIRIGENT and O-methyltransferase promoters confer stem-regulated gene expression in diverse monocots. Planta 231:1439–1458

    Google Scholar 

  • de Lucca PC, Dong S, Geijskes RJC, Dunder EM, Sainz MB (2010) Methods for Agrobacterium-mediated transformation of sugar cane. Patent application WO 2010/151634A1

  • Dugdale B, Beetham PR, Becker DK, Harding RM, Dale JL (1998) Promoter activity associated with the intergenic regions of banana bunchy top virus DNA-1 to -6 in transgenic tobacco and banana cells. J Gen Virol 79:2301–2311

    CAS  PubMed  Google Scholar 

  • Fu H, Kim SY, Park WD (1995) A potato Sus3 sucrose synthase gene contains a context-dependent 3′ element and a leader intron with both positive and negative tissue-specific effects. Plant Cell 7:1395–1403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA (1987) A comparison of eukaryotic viral 5′-leader seqeunces as enhancers of mRNA expression in vivo. Nucleic Acids Res 15:8693–8711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gehrig J, Reischl M, Kalmár E, Ferg M, Hadzhiev Y, Zaucker A, Song C, Schindler S, Liebel U, Müller F (2009) Automated high-throughput mapping of promoter–enhancer interactions in zebrafish embryos. Nat Methods 6:911–916

    Article  CAS  PubMed  Google Scholar 

  • Grof CPL, Glassop D, Quick WP, Sonnewald U, Campbell JA (1996) Molecular manipulation of sucrose phosphate synthase in sugarcane. In: Wilson JR et al (eds) Sugarcane: research towards efficient and sustainable production. CSIRO Division of Tropical Crops and Pastures, Brisbane, pp 124–126

    Google Scholar 

  • Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353

    Article  CAS  PubMed  Google Scholar 

  • Hamerli D, Birch RG (2011) Transgenic expression of trehalulose synthase results in high concentrations of the sucrose isomer trehalulose in mature stems of field-grown sugarcane. Plant Biotechnol J 9:32–37

    Article  CAS  PubMed  Google Scholar 

  • Hansom S, Bower R, Zhang L, Potier B, Elliott A, Basnayake S, Cordeiro G, Hograth DM, Cox M, Berding N, Birch RG (1999) Regulation of transgene expression in sugarcane. In: Singh V (ed) Proceedings of the International Society of Sugarcane Technology, XXIII congress. STAI, New Delhi, pp 278–290

  • Harrison MD, Geijskes J, Coleman HD, Shand K, Kinkema M, Palupe A, Hassall R, Sainz M, Lloyd R, Miles S, Dale JL (2011) Accumulation of recombinant cellobiohydrolase and endoglucananse in the leaves of mature transgenic sugar cane. Plant Biotechnol J 9:884–896

    Article  CAS  PubMed  Google Scholar 

  • Hir HL, Nott A, Moore MJ (2003) How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 28:215–220

    Article  PubMed  Google Scholar 

  • Hohn T, Stavolone L, De Haan PT, Ligon HT, Kononova M (2007) Cestrum yellow leaf curling virus promoters. US Patent 7,166,770

  • Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–134

    CAS  PubMed  Google Scholar 

  • Jain M, Chengalrayan K, Abouzid A, Gallo M (2007) Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants. Plant Cell Rep 26:581–590

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Jeon J-S, Lee S, Jung K-H, Jun S-H, Kim C, An G (2000) Tissue-preferential expression of a rice α-tubulin gene, OsTubA1, mediated by the first intron. Plant Physiol 123:1005–1014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinkema M, Miles S (2013) Compositions and methods for increased expression in sugar cane. Patent application WO/2013/090137

  • Koziel MG, Carozzi NB, Desai N (1996) Optimizing expression of transgenes with an emphasis on posttranscriptional events. Plant Mol Biol 32:393–405

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Aitken KS, Grof CLP, Bonnett GD, Smith GR (2005) Sugarcane biotechnology: the challenges and opportunities. In Vitro Cell Dev Biol Plant 41:345–363

    Article  CAS  Google Scholar 

  • Liu D, Oard SV, Oard JH (2003) High transgene expression levels in sugarcane (Saccharum officinarum L.) driven by the rice ubiquitin promoter RUBQ2. Plant Sci 165:743–750

    Article  CAS  Google Scholar 

  • Makarevitch I, Svitashev SK, Somers DA (2003) Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant Mol Biol 52:421–432

    Article  CAS  PubMed  Google Scholar 

  • McQualter RB, Chong BF, Meyer K, Van Dyk DE, O’Shea MG, Walton NJ, Viitanen PV, Brumbley SM (2005) Initial evaluation of sugarcane as a production platform for p-hydroxybenzoic acid. Plant Biotechnol J 3:29–41

    Article  CAS  PubMed  Google Scholar 

  • Moyle RL, Birch RG (2013) Sugarcane loading stem gene promoters drive transgene expression preferentially in the stem. Plant Mol Biol 82:51–58

    Google Scholar 

  • Mudge SR, Osabe K, Casu RE, Bonnett GD, Manners JM, Birch RG (2009) Efficient silencing of reporter transgenes coupled to known functional promoters in sugarcane, a highly polyploid crop species. Planta 229:549–558

    Article  CAS  PubMed  Google Scholar 

  • Mudge SR, Basnayake SW, Moyle RL, Osabe K, Graham MW, Morgan TE, Birch RG (2013) Mature-stem expression of a silencing-resistant sucrose isomerase gene drives isomaltulose accumulation to high levels in sugarcane. Plant Biotechnol J. doi:10.1111/pbi.12038

    PubMed  Google Scholar 

  • Nakagawa S, Niimura Y, Gojobori T, Tanaka H, Miura K (2008) Diversity of preferred nucleotide sequences around the translation initiation codon in eukaryote genomes. Nucleic Acids Res 36:861–871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA 88:3324–3328

    Article  CAS  PubMed  Google Scholar 

  • Petrasovits LA, Purnell MP, Nielsen LK, Brumbley SM (2007) Production of polyhydroxybutyrate in sugarcane. Plant Biotechnol J 5:162–172

    Article  CAS  PubMed  Google Scholar 

  • Petrasovits LA, Zhao L, McQualter RB, Snell KD, Somleva MN, Patterson NA, Nielsen LK, Brumbley SM (2012) Enhanced polyhydroxybutyrate production in transgenic sugarcane. Plant Biotechnol J 10:569–578

    Article  CAS  PubMed  Google Scholar 

  • Sainz MB (2009) Commercial cellulosic ethanol: the role of plant-expressed enzymes. In Vitro Cell Dev Biol Plant 45:314–329

    Article  CAS  Google Scholar 

  • Schenk PM, Sagi L, Remans T, Dietzgen RG, Bernard MJ, Graham MW, Manners JM (1999) A promoter from sugarcane bacilliform badnavirus drives transgene expression in banana and other monocot and dicot plants. Plant Mol Biol 39:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R (2004) Silencing in Arabiodpsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16:2561–2572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singer SD, Cox KD, Liu Z (2010) Both the constitutive Cauliflower Mosaic Virus 35S and tissue-specific AGAMOUS enhancers activate transcription autonomously in Arabidopsis thaliana. Plant Mol Biol 74:293–305

    Article  CAS  PubMed  Google Scholar 

  • Vickers JE, Grof CPL, Bonnett GD, Jackson PA, Knight DP, Roberts SE, Robinson SP (2005) Overexpression of polyphenol oxidase in transgenic sugarcane results in darker juice and raw sugar. Crop Sci 45:354–362

    Article  CAS  Google Scholar 

  • Wang H, Lee MM, Schiefelbein J (2002) Regulation of the cell expansion gene RHD3 during Arabiodpsis development. Plant Physiol 129:638–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang ML, Goldstein C, Su W, Moore PH, Albert HH (2005) Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgenic Res 14:167–178

    Article  PubMed  Google Scholar 

  • Weng L-X, Deng H-H, Xu J-L, Li Q, Zhang Y-Q, Jiang Z-D, Li Q-W, Chen J-W, Zhang L-H (2011) Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials. Transgenic Res 20:759–772

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J 5:109–117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Michele Yarnall and Rachel Whinna (Syngenta Biotechnology, Incorporated) for carrying out all of the GUS qELISA analyses, Jamie Huang and Wenling Wang (Syngenta Biotechnology, Incorporated) for TaqMan analysis, and Shujie Dong (Syngenta Biotechnology, Incorporated) for help with sample deliveries. We also would like to acknowledge Mark Harrison, Robyn Lloyd, Rachael Hassall, Amanda Johnson, and Jan Zhang for their assistance with plant sampling, and Mark Harrison for critical review of the manuscript. We would like to acknowledge a potential conflict of interest in that the author Dr Mark Kinkema has filed a patent application for the dual transcriptional enhancer sequence described in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Kinkema.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinkema, M., Geijskes, J., deLucca, P. et al. Improved molecular tools for sugar cane biotechnology. Plant Mol Biol 84, 497–508 (2014). https://doi.org/10.1007/s11103-013-0147-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0147-8

Keywords

Navigation