Skip to main content

Advertisement

Log in

Development of High-Content Gemcitabine PEGylated Liposomes and Their Cytotoxicity on Drug-Resistant Pancreatic Tumour Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The objective of this study was to develop high-content gemcitabine PEGylated liposomes to reverse gemcitabine resistance in pancreatic tumour cells. The mechanism of drug loading into liposomes was also investigated.

Methods

To increase the drug entrapment efficiency (EE) and drug loading (DL), a novel passive loading approach named Small Volume Incubation method (SVI) was developed and compared to the reverse phase evaporation (REV) and remote loading methods. The in vitro cytotoxicity was evaluated using MIA PaCa-2 and Panc-1 cell lines.

Results

The EE for remote loading was 12.3 ± 0.3%, much lower than expected and a burst release was observed with the resultant liposomes. Using the optimized SVI method, increased EE (37 ± 1%) and DL (4%, w/w) were obtained. The liposomes (200 ± 5 nm) showed minimal drug leakage, good stability, and significant improvement in cytotoxicity to the gemcitabine-resistant pancreatic cancer cell lines.

Conclusions

Remote loading was not suitable for loading gemcitabine into liposomes. pKa > 4.6 for basic drugs and intra-liposomal precipitation of loaded compounds were suggested as an additional requirement to the current criteria for remote loading using ammonium sulphate gradient (pKa < 11). High DL is essential for liposomes to reverse gemcitabine resistance in pancreatic cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DL:

Drug loading

EE:

Entrapment efficiency

MDR:

Multidrug resistance

MTT:

3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide

PEG:

Polyethylene glycol

REV:

Reverse phase evaporation

SVI:

Small volume incubation

TFH:

Thin film hydration

REFERENCES

  1. Toscbi L, Finoccbiaro G, Bartolini S, Gioia V, Cappuzzo F. Role of gemcitabine in cancer therapy. Future Oncol. 2005;1:7–17.

    Article  Google Scholar 

  2. Hilbig A, Oettle H. Gemcitabine in the treatment of metastatic pancreatic cancer. Expert Rev Anticancer Ther. 2008;8:511–23.

    Article  PubMed  CAS  Google Scholar 

  3. Mylonakis N, Athanasiou A, Ziras N, Angel J, Rapti A, Lampaki S, et al. Phase II study of liposomal cisplatin (LipoplatinTM) plus gemcitabine versus cisplatin plus gemcitabine as first line treatment in inoperable (stage IIIB/IV) non-small cell lung cancer. Lung Cancer. 2010;68:240–7.

    Article  PubMed  CAS  Google Scholar 

  4. Abbruzzese JL, Grunewald R, Weeks EA, Gravel D, Adams T, Nowak B, et al. A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J Clin Oncol. 1991;9:491–8.

    PubMed  CAS  Google Scholar 

  5. Storniolo AM, Allerheiligen SR, Pearce HL. Preclinical, pharmacologic, and phase I studies of gemcitabine. Semin Oncol. 1997;24:S7-2–7.

    Google Scholar 

  6. Kohne AKC-H, Haufe TFJPT, Schleyer PGGEE. Pharmacokinetics of gemcitabine in a patient with end-stage renal disease: effective clearance of its main metabolite by standard hemodialysis treatment. Cancer Chemother Pharmacol. 2003;51:266–70.

    PubMed  Google Scholar 

  7. Kuenen BBC, Rosen L, Smit EF, Parson MRN, Levi M, Ruijter R, et al. Dose-finding and pharmacokinetic study of cisplatin, gemcitabine, and SU5416 in patients with solid tumors. J Clin Oncol. 2002;20(6):1657–67.

    Article  PubMed  CAS  Google Scholar 

  8. Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM, et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 2010;70(9):3606–17.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Celia C, Grazia M, Paolino CD, Bulotta S, Ventura CA, Russo D, et al. Improved in vitro anti-tumoral activity, intracellular uptake and apoptotic induction of gemcitabine-loaded pegylated unilamellar liposomes. J Nanosci Nanotechnol. 2008;8:2102–13.

    Article  PubMed  CAS  Google Scholar 

  10. Kim I-Y, Kang Y-S, Lee DS, Park H-J, Choi E-K, Oh Y-K, et al. Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice. J Control Release. 2009;140:55–60.

    Article  PubMed  CAS  Google Scholar 

  11. Federico C, Morittu VM, Britti D, Trapasso E, Cosco D. Gemcitabine-loaded liposomes: rationale, potentialities and future perspectives. Int J Nanomedicine. 2012;7:5423–36.

    PubMed  PubMed Central  Google Scholar 

  12. Suzuki R, Takizawa T, Kuwata Y, Mutoha M, Ishiguro N, Utoguchi N, et al. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin–PEG-liposome. Int J Pharm. 2008;346:143–50.

    Article  PubMed  CAS  Google Scholar 

  13. Barenholz Y. Liposome application: problems and prospects. Curr Opin Colloid Interface Sci. 2001;6:66–77.

    Article  CAS  Google Scholar 

  14. Slepushkin VA, Simões S, Dazin P, Newman MS, Guo LS, Pedroso de Lima MC, et al. Sterically stabilized pH-sensitive liposomes. J Biol Chem. 1997;272(4):2382–8.

    Article  PubMed  CAS  Google Scholar 

  15. Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta. 1995;1233:134–44.

    Article  PubMed  Google Scholar 

  16. K-i O, Una K, Minatoa K, Tanakab K-i, Higakia K, Kimura T. Determinants for in vivo anti-tumor effects of PEG liposomal doxorubicin: importance of vascular permeability within tumors. Int J Pharm. 2008;359:234–40.

    Article  Google Scholar 

  17. Graeser R, Bornmann C, Esser N, Ziroli V, Jantscheff P, Unger C, et al. Antimetastatic effects of liposomal gemcitabine and empty liposomes in an orthotopic mouse model of pancreatic cancer. Pancreas. 2009;38:330–7.

    Article  PubMed  CAS  Google Scholar 

  18. Cosco D, Bulotta A, Ventura M, Celia C, Calimeri T, Perri G, et al. In vivo activity of gemcitabine-loaded PEGylated small unilamellar liposomes against pancreatic cancer. Cancer Chemother Pharmacol. 2009;64:1009–20.

    Article  PubMed  CAS  Google Scholar 

  19. Celano M, Calvagno MG, Bulotta S, Paolino D, Arturi F, Rotiroti D, et al. Cytotoxic effects of Gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells. BMC Cancer. 2004;4(63):1–5.

    Google Scholar 

  20. Xua X, Khanb MA, Burgessa DJ. Predicting hydrophilic drug encapsulation inside unilamellar liposomes. Int J Pharm. 2012;432:410–8.

    Article  Google Scholar 

  21. Bansal SS, Celia C, Ferrati S, Zabre E, Ferrari M, Palapattu G, et al. Validated RP-HPLC method for the simultaneous analysis of gemcitabine and LY-364947 in liposomal formulations. Curr Drug Targets. 2013;14:1–9.

    Article  Google Scholar 

  22. Hong M-S, Lee SJ, Oh Y-K, Kim C-K. pH-sensitive, serum-stable and long-circulating liposomes as a new drug delivery system. J Pharm Pharmacol. 2002;54:51–8.

    Article  PubMed  CAS  Google Scholar 

  23. Zucker D, Marcus D, Barenholz Y, Goldblum A. Liposome drugs’ loading efficiency: a working model based on loading conditions and drug’s physicochemical properties. J Control Release. 2009;139:73–80.

    Article  PubMed  CAS  Google Scholar 

  24. Bolotin EM, Cohen R, Bar LK, Emanuel N, Ninio S, Lasic DD, et al. Ammonium sulfate gradients for efficient and stable remote loading of amphipathic weak bases into liposomes and ligandoliposomes. J Liposome Res. 1994;4(1):455–79.

    Article  Google Scholar 

  25. Cern A, Golbraikh A, Sedykh A, Tropsha A, Barenholz Y, Goldblum A. Quantitative structure -property relationship modeling of remote liposome loading of drugs. J Control Release. 2011. doi:10.1016/j.jconrel.2011.11.029.

    PubMed  PubMed Central  Google Scholar 

  26. Paolino D, Cosco D, Racanicchi L, Trapasso E, Celia C, Iannone M, et al. Gemcitabine-loaded PEGylated unilamellar liposomes vs GEMZAR®: biodistribution, pharmacokinetic features and in vivo antitumor activity. J Control Release. 2010;144:144–50.

    Article  PubMed  CAS  Google Scholar 

  27. Cosco D, Paolino D, Cilurzo F, Casale F, Fresta M. Gemcitabine and tamoxifen-loaded liposomes as multidrug carriers for the treatment of breast cancer diseases. Int J Pharm. 2012;422:229–37.

    Article  PubMed  CAS  Google Scholar 

  28. Calvagno MG, Celia C, Paolino D, Cosco D, Iannone M, Castelli F, et al. Effects of lipid composition and preparation conditions on physical-chemical properties, technological parameters and in vitro biological activity of gemcitabine-loaded liposomes. Curr Drug Deliv. 2007;4:89–101.

    Article  PubMed  CAS  Google Scholar 

  29. Møkleby T. Active loading of gemcitabine into liposomes [Master]. University of Tromsø; 2009.

  30. Gravem H. Gemcitabine-containing liposomes. University of Tromsø; 2006.

  31. Vali AM, Toliyat T, Shafaghi B, Dadashzadeh S. Preparation, optimization, and characterization of topotecan loaded PEGylated liposomes using factorial design. Drug Dev Ind Pharm. 2008;34:10–23.

    Article  PubMed  CAS  Google Scholar 

  32. El-Gibaly I, Abdel-Ghaffar SK. Effect of hexacosanol on the characteristics of novel sustained-release allopurinol solid lipospheres (SLS): factorial design application and product evaluation. Int J Pharm. 2005;294:33–51.

    Article  PubMed  CAS  Google Scholar 

  33. Costa P. An alternative method to the evaluation of similarity factor in dissolution testing. Int J Pharm. 2001;220:77–83.

    Article  PubMed  CAS  Google Scholar 

  34. Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev. 2011;63:161–9.

    Article  PubMed  CAS  Google Scholar 

  35. Juliano RL, Stamp D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun. 1975;63(3):651–8.

    Article  PubMed  CAS  Google Scholar 

  36. Zhanga T, Li Y, Mueller A. Phase structure of liposome in lipid mixtures. Chem Phys Lipids. 2011;164:722–6.

    Article  Google Scholar 

  37. Garbuzenko O, Barenholz Y, Priev A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem Phys Lipids. 2005;135:117–29.

    Article  PubMed  CAS  Google Scholar 

  38. Cui J, Li C, Guo W, Li Y, Wang C, Zhang L, et al. Direct comparison of two pegylated liposomal doxorubicin formulations: is AUC predictive for toxicity and efficacy? J Control Release. 2007;118:204–15.

    Article  PubMed  CAS  Google Scholar 

  39. Kirkham M, Parton RG. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta. 2005;1745:273–86.

    Article  PubMed  CAS  Google Scholar 

  40. Huang RB, Mocherla S, Heslinga MJ, Charoenphol P, Eniola-Adefeso O. Dynamic and cellular interactions of nanoparticles in vascular-targeted drug delivery. Mol Membr Biol. 2010;27:190–205.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The financial support for this study was provided by New Zealand Cancer Society (Grant Number 3627223). The authors also wish to acknowledge the support of a Doctorial Scholarship for Hongtao Xu provided by The University of Auckland, New Zealand. The authors declare that they have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zimei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Paxton, J., Lim, J. et al. Development of High-Content Gemcitabine PEGylated Liposomes and Their Cytotoxicity on Drug-Resistant Pancreatic Tumour Cells. Pharm Res 31, 2583–2592 (2014). https://doi.org/10.1007/s11095-014-1353-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1353-z

KEY WORDS

Navigation