Skip to main content

Advertisement

Log in

Development and In Vitro Evaluation of Long Circulating Liposomes for Targeted Delivery of Gemcitabine and Irinotecan in Pancreatic Ductal Adenocarcinoma

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The classically used nontargeted chemotherapeutic approach to pancreatic cancer has a dual drawback of suboptimal drug delivery at the target site and the systemic side effects produced by the unfettered exposure of the drug to healthy tissue. This study has the objective of developing novel poly(2-ethyl-2-oxazoline) (PETOX)–based long circulating liposomes loaded with gemcitabine and irinotecan for the treatment of pancreatic ductal adenocarcinoma, with a juxtaposition to PEGylated and uncoated liposomes. A PETOX−cholesteryl chloroformate lipopolymer conjugate (PETOX–ChC) with a carbonate linkage was prepared and characterized by 1H NMR, FTIR, and DSC. Liposomes were prepared using the thin film hydration technique followed by freeze–thaw and membrane extrusion methods. Liposome characterization includes particle size determination, zeta potential determination using a zetameter, and structural elucidation using 31P NMR and cryo-TEM. The PETOXylated liposomes showed a particle size of 180.1 ± 2.2 nm and a zeta potential of − 33.63 ± 1.23 mV. The liposomal combination therapy of gemcitabine and irinotecan was found to have an IC50 value 39 times lower in comparison to the drug combination in solution, while the PEGylated and PETOXylated liposomes showed IC50 values 1.6 times lower and 2 times lower than that of uncoated liposomes, respectively, against Mia PaCa II pancreatic cancer cell line. The PEGylated and PETOXylated liposomes showed 4.1 and 5.4 times slower macrophagial uptake in vitro in comparison to the uncoated liposomes respectively. The PEGylated liposomes showed 11% higher in vitro macrophagial uptake in comparison to PETOXylated liposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABC:

Accelerated blood clearance

ChC:

Cholesteryl chloroformate

Cryo-TEM:

Transmission electron cryomicroscopy

DCC:

N,N′-Dicyclohexylcarbodiimide

DCM:

Dichloromethane

DMAP:

4-Dimethylaminopyridine

DSC:

Differential scanning calorimetry

DSPE:

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine

FTIR:

Fourier transform infrared spectroscopy

HPLC:

High-performance liquid chromatography

MTT:

(3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide)

NMR:

Nuclear magnetic resonance

PDAC:

Pancreatic ductal adenocarcinoma

PE:

Phosphatidyl ethanolamine

PEG:

Polyethylene glycol

PETOX:

Poly(2-ethyl-2-oxazoline)

RES:

Reticuloendothelial system

References

  1. Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, et al., editors. SEER cancer statistics review, 1975-2017. Bethesda: National Cancer Institute. https://seer.cancer.gov/csr/1975_2017/, based on November 2019 SEER data submission, posted to the SEER web site, April 2020

  2. Sohal D, Mangu P, Khorana A, Shah M, Philip P, O’Reilly E, et al. Metastatic pancreatic cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2016;34:2784–96. https://doi.org/10.1200/JCO.2016.67.1412.

    Article  PubMed  PubMed Central  Google Scholar 

  3. National Cancer Institute. Pancreatic cancer: an agenda for action. Report of the Pancreatic Cancer Progress Review Group. NIH Publication No. 01-4940. Bethesda (MD): NCI, 2001.

  4. Burris H III, Moore M, Andersen J, Green M, Rothenberg M, Modiano M, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13. https://doi.org/10.1200/JCO.1997.15.6.2403.

    Article  CAS  PubMed  Google Scholar 

  5. Heinemann V, et al. Comparison of the cellular pharmacokinetics and toxicity of 2′, 2-difluoro deoxycytidine and 1-beta-D-arabinofuranosylcytosine. Cancer Res. 1988;48(14):4024–31.

    CAS  PubMed  Google Scholar 

  6. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25. https://doi.org/10.1056/NEJMoa1011923.

    Article  CAS  PubMed  Google Scholar 

  7. Wang-Gillam A, Li CP, Bodoky G, Dean A, Shan YS, Jameson G, et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomized, open-label, phase 3 trial. Lancet. 2016;387(10018):545–57. https://doi.org/10.1016/S0140-6736(15)00986-1.

    Article  CAS  PubMed  Google Scholar 

  8. Swami U, Goel S, Mani S. Therapeutic targeting of CPT-11 induced diarrhea: a case for prophylaxis. Curr Drug Targets. 2013;14(7):777–97. https://doi.org/10.2174/1389450111314070007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rocha Lima CM, Savarese D, Bruckner H, et al. Irinotecan plus gemcitabine induces both radiographic and CA 19-9 tumor marker responses in patients with previously untreated advanced pancreatic cancer. J Clin Oncol. 2002;20(5):1182–91. https://doi.org/10.1200/JCO.2002.20.5.1182.

    Article  PubMed  Google Scholar 

  10. Stathopoulos GP, Rigatos SK, Dimopoulos MA, Giannakakis T, Foutzilas G, Kouroussis C, et al. Treatment of pancreatic cancer with a combination of irinotecan (CPT-11) and gemcitabine: a multicenter phase II study by the Greek Cooperative Group for Pancreatic Cancer. Ann Oncol. 2003;14(3):388–94. https://doi.org/10.1093/annonc/mdg109.

    Article  CAS  PubMed  Google Scholar 

  11. Stathopoulos GP, Syrigos K, Polyzos A, Fountzilas G, Rigatos SK, Ziras N, et al. Front-line treatment of inoperable or metastatic pancreatic cancer with gemcitabine and capecitabine: an intergroup, multicenter, phase II study. Ann Oncol. 2004;15(2):224–9. https://doi.org/10.1093/annonc/mdh065.

    Article  CAS  PubMed  Google Scholar 

  12. Felice B, Prabhakaran MP, Rodríguez AP, Ramakrishna S. Drug delivery vehicles on a nano-engineering perspective. Mater Sci Eng C Mater Biol Appl. 2014;41:178–95. https://doi.org/10.1016/j.msec.2014.04.049.

    Article  CAS  PubMed  Google Scholar 

  13. Salmaso S, Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv. 2013. Article ID 374252, 19 page. https://doi.org/10.1155/2013/374252.

  14. Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. The role of complement in biomaterial-induced inflammation. Mol Immunol. 2007;44:82–94. https://doi.org/10.1016/j.molimm.2006.06.020.

    Article  CAS  PubMed  Google Scholar 

  15. Maruyama K, Yuda T, Okamoto A, Kojima S, Suginaka A, Iwatsuru M. Prolonged circulation time in vivo of large unilamellar liposomes composed of distearoyl phosphatidylcholine and cholesterol containing amphipathic poly (ethylene glycol). Biochim Biophys Acta. 1992;1128:4–9. https://doi.org/10.1016/0005-2760(92)90255-T.

    Article  Google Scholar 

  16. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12,1):6387–92.

    CAS  PubMed  Google Scholar 

  17. Allen TM, Hansen C, Martin F, Redemann C, Yau-young A. Liposomes containing synthetic lipid derivatives of poly (ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta. 1991;1066(1):29–36. https://doi.org/10.1016/0005-2736(91)90246-5.

    Article  CAS  PubMed  Google Scholar 

  18. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethylene glycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268(1):235–7. https://doi.org/10.1016/0014-5793(90)81016-h.

    Article  CAS  PubMed  Google Scholar 

  19. Dams ETM, Laverman P, Oyen WJG, Storm G, Scherphof GL, van der Meer JWM, et al. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther. 2000;292(3):1071–9.

    CAS  PubMed  Google Scholar 

  20. Ishida T, Maeda R, Ichihara M, Irimura K, Kiwada M. Accelerated clearance of PEGylated liposomes in rats after repeated injections. J Control Release. 2003;88:35–42. https://doi.org/10.1016/s0168-3659(02)00462-5.

    Article  CAS  PubMed  Google Scholar 

  21. Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release. 2006;112:15–25. https://doi.org/10.1016/j.jconrel.2006.01.005.

    Article  CAS  PubMed  Google Scholar 

  22. Ishida T, Wang X, Shimizu T, Nawata K, Kiwada H. PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J Control Release. 2007;122(3):349–55. https://doi.org/10.1016/j.jconrel.2007.05.015.

    Article  CAS  PubMed  Google Scholar 

  23. Armstrong JK, Hempel G, Koling S, Chan LS, Fisher T, Meiselman HJ, et al. Antibody against poly (ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer. 2007;110:103–11. https://doi.org/10.1002/cncr.22739.

    Article  PubMed  Google Scholar 

  24. Yang Q, Jacobs TM, McCallen JD, Moore DT, Huckaby JT, Edelstein JN, et al. Analysis of pre-existing IgG and IgM antibodies against polyethylene glycol (PEG) in the general population. Anal Chem. 2016;88(23):11804–12. https://doi.org/10.1021/acs.analchem.6b03437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tomalia DA, Sheetz DP. Homopolymerization of 2-alkyl- and 2-aryl-2-oxazolines. J Polym Sci A Polym Chem. 1966;4:2253–65. https://doi.org/10.1002/pol.1966.150040919.

    Article  CAS  Google Scholar 

  26. Seeliger W, Aufderhaar E, Diepers W, Feinauer R, Nehring R, Thier W, et al. Recent syntheses and reactions of cyclic imidic esters. Angew Chem Int Ed. 1966;5:875–88. https://doi.org/10.1002/anie.196608751.

    Article  CAS  Google Scholar 

  27. Kagiya T, Narisawa S, Maeda T, Fukui K. Ring-opening polymerization of 2-substituted 2-oxazolines. J Polym Sci B Polym Lett. 1966;4:441–5. https://doi.org/10.1002/pol.1966.110040701.

    Article  CAS  Google Scholar 

  28. Bassiri TG, Levy A, Litt M. Polymerization of cyclic imino ethers. I. Oxazolines. J Polym Sci B Polym Lett. 1967;5:871–9. https://doi.org/10.1002/pol.1967.110050927.

    Article  Google Scholar 

  29. Verlander WH, Madurawe RD, Subramanian A, Kumar G, Sinai-Zingde G, Riffle J. Polyoxazoline-peptide adducts that retain antibody activity. Biotechnol Bioeng. 1992;39:1024–30.

    Article  Google Scholar 

  30. Woodle M, Engbers C, Zalipsky S. New amphipathic polymer-lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes. Bioconjug Chem. 1994;5:493–6. https://doi.org/10.1021/bc00030a001.

    Article  CAS  PubMed  Google Scholar 

  31. Zalipsky S, Hansen CB, Oaks JM, Allen TM. Evaluation of blood clearance rates and biodistribution of poly(2-oxazoline)-grafted liposomes. J Pharm Sci. 1996;85:133–7. https://doi.org/10.1021/js9504043.

    Article  CAS  PubMed  Google Scholar 

  32. Xu H, Zhang W, Li Y, Ye FF, Yin PP, Yu X, et al. The bifunctional liposomes constructed by poly(2-ethyl-oxazoline)-cholesteryl methyl carbonate: an effectual approach to enhance liposomal circulation time, pH-sensitivity and endosomal escape. Pharm Res. 2014;31(11):3038–50. https://doi.org/10.1007/s11095-014-1397-0.

    Article  CAS  PubMed  Google Scholar 

  33. Moreadith R, et al. Clinical development of a poly(2-oxazoline) (POZ) polymer therapeutic for the treatment of Parkinson’s disease – proof of concept of POZ as a versatile polymer platform for drug development in multiple therapeutic indications. Eur Polym J. 2017;88:524–52. https://doi.org/10.1016/j.eurpolymj.2016.09.052.

    Article  CAS  Google Scholar 

  34. Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol. 2008;26(1):57–64. https://doi.org/10.1016/j.urolonc.2007.03.015.

    Article  CAS  PubMed  Google Scholar 

  35. Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (London). 2013;8(9):1509–28. https://doi.org/10.2217/nnm.13.118.

    Article  CAS  Google Scholar 

  36. Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anticancer drug delivery. J Control Release. 2010;148(2):135–46. https://doi.org/10.1016/j.jconrel.2010.08.027.

    Article  CAS  PubMed  Google Scholar 

  37. Sawant RR, Torchilin VP. Challenges in development of targeted liposomal therapeutics. AAPS J. 2012;14(2):303–15. https://doi.org/10.1208/s12248-012-9330-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moreau C, Floch ML, Segalen J, Leray G, Metzinger L, Certaines JD, et al. Static and magic angle spinning 31P NMR spectroscopy of two natural plasma membranes. FEBS Lett. 1999;461(3):258–62. https://doi.org/10.1016/s0014-5793(99)01461-1.

    Article  CAS  PubMed  Google Scholar 

  39. Fröhlich M, Brecht V, Peschka-Süss R. Parameters influencing the determination of liposome lamellarity by 31P-NMR. Chem Phys Lipids. 2001;109(1):103–12. https://doi.org/10.1016/S0009-3084(00)00220-6.

    Article  PubMed  Google Scholar 

  40. Yeagle PL. Phosphorus NMR of membranes. In: Berliner LJ, Reuben J, editors. Biological magnetic resonance, vol. 9. Boston: Springer; 1990. https://doi.org/10.1007/978-1-4615-6549-9_1.

    Chapter  Google Scholar 

  41. Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta Rev Biomembr. 1978;515(2):105–40. https://doi.org/10.1016/0304-4157(78)90001-1.

    Article  CAS  Google Scholar 

  42. Awasthi VD, Garcia D, Klipper R, Goins BA, Phillips WT. Neutral and anionic liposome-encapsulated hemoglobin: effect of post-inserted poly (ethylene glycol)-distearoylphosphatidylethanolamine on distribution and circulation kinetics. J Pharmacol Exp Ther. 2004;309:241–8. https://doi.org/10.1124/jpet.103.060228.

    Article  CAS  PubMed  Google Scholar 

  43. Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics. 2013;5(4):542–69. Published 2013 Oct 25. https://doi.org/10.3390/pharmaceutics5040542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Allen TM, Austin GA, Chonn A, Lin L, Lee KC. Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size. Biochim Biophys Acta. 1991;1061(1):56–64. https://doi.org/10.1016/0005-2736(91)90268-d.

    Article  CAS  PubMed  Google Scholar 

  45. Hansen AE, Petersen AL, Henriksen JR, Boerresen B, Rasmussen P, Elema DR, et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano. 2015;9(7):6985–95. https://doi.org/10.1021/acsnano.5b01324.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The cryo-TEM images were obtained with cooperation from Dr. Wei Zhang at the University of Minnesota, MN, USA. The pancreatic cancer cell lines were obtained from Dr. Surinder Batra and Dr. Rakesh Singh of the University of Nebraska Medical Center, Omaha, NE.

Funding

This work was supported by the Department of Pharmacy Sciences and the Department of Chemistry at Creighton University, Omaha, NE, USA. The confocal imaging research was conducted at the Integrated Biomedical Imaging Facility at Creighton University, Omaha, NE. This facility is supported by the Creighton University School of Medicine and grants GM103427 and GM110768 from the National Institute of General Medical Science (NIGMS), a component of the National Institutes of Health (NIH). The facility was constructed with support from grants from the National Center for Research Resources (RROI 64 69) and the NIGMS (GM103427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Dash.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deodhar, S., Dash, A.K., North, E.J. et al. Development and In Vitro Evaluation of Long Circulating Liposomes for Targeted Delivery of Gemcitabine and Irinotecan in Pancreatic Ductal Adenocarcinoma. AAPS PharmSciTech 21, 231 (2020). https://doi.org/10.1208/s12249-020-01745-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01745-6

KEY WORDS

Navigation