Skip to main content

Advertisement

Log in

Influence of Humidity on the Electrostatic Charge and Aerosol Performance of Dry Powder Inhaler Carrier based Systems

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Abstract

To investigate the influence of storage relative humidity (RH) on the aerosolisation efficiency and tribo-electrification of carrier based dry powder inhaler (DPI) formulations using the next generation impactor (NGI) in vitro methodology and the electrostatic low pressure impactor (ELPI). Micronised salbutamol (d 0.5 1.48 ± 0.03 μm) was blended with 63–90 μm sieve fractioned α-lactose monohydrate carrier and stored at a range of humidities (0–84% RH). The aerosolisation efficiency after storage for 24 h periods was investigated using the NGI. The same experiment was conducted using the ELPI, with corona charger switched off, to measure the net charge vs. mass deposition profile. Significant variations in the aerosolisation efficiency of the formulation were observed with respect to storage RH. In general, the fine particle fraction aerosol performance measured by NGI and ELPI (fraction with mass median aerodynamic diameter <4.46 and 4.04 μm, respectively) followed a positive parabola with aerosol performance increasing over the range 0–60% RH before decreasing >60% RH. Analysis of the ELPI charge data suggested that the micronised salbutamol sulphate had an electronegative charge when aerosolised from lactose based carriers, which was most electronegative at low RH. Increased storage RH resulted in a reduction in net charge to mass ratio with the greatest reduction at RH >60%. The aerosol performance of this binary system is dependent on both electrostatic and capillary forces. The use of the ELPI allows a degree of insight into how these forces affect formulation performances after storage at different RH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. J. Smith and M. Parry-Billings. The inhalers of the future? A review of dry powder devices on the market today. Pulm. Pharmacol. Ther. 16:79–95 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. M. S. Coates, D. F. Fletcher, H. K. Chan, and J. A. Raper. Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 1: grid structure and mouthpiece length. J. Pharm. Sci. 93:2863–2876 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. W. C. Hinds. Aerosol Technology. Wiley, New York, 1999.

    Google Scholar 

  4. R. N. Jashnani and P. R. Byron. Dry powder aerosol generation in different environments: performance comparisons of albuterol, albuterol sulfate, albuterol adipate and albuterol stearate1. Int. J. Pharm. 130:13–24 (1996).

    Article  CAS  Google Scholar 

  5. R. N. Jashnani, P. R. Byron, and R. N. Dalby. Testing of dry powder aerosol formulations in different environmental-conditions. Int. J. Pharm. 113:123–130 (1995).

    Article  CAS  Google Scholar 

  6. P. M. Young, R. Price, M. J. Tobyn, M. Buttrum, and F. Dey. Effect of humidity on aerosolization of micronized drugs. Drug Dev. Ind. Pharm. 29:959–966 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. P. M. Young and R. Price. The influence of humidity on the aerosolisation of micronised and SEDS produced salbutamol sulphate. Eur. J. Pharm. Sci. 22:235–240 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. K. Iida, Y. Hayakawa, H. Okamoto, K. Danjo, and H. Luenberger. Influence of storage humidity on the in vitro inhalation properties of salbutamol sulfate dry powder with surface covered lactose carrier. Chem. Pharm. Bull. 52:444–446 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. A. Voss and W. H. Finlay. Deagglomeration of dry powder pharmaceutical aerosols 1. Int. J. Pharm. 248:39–50 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. L. Maggi, R. Bruni, and U. Conte. Influence of the moisture on the performance of a new dry powder inhaler30. Int. J. Pharm. 177:83–91 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. P. M. Young, M. J. Tobyn, R. Price, M. Buttrum, and F. Dey. The use of colloid probe microscopy to predict aerosolization performance in dry powder inhalers: AFM and in vitro correlation. J. Pharm. Sci. (2006).

  12. P. M. Young, R. Price, M. J. Tobyn, M. Buttrum, and F. Dey. The influence of relative humidity on the cohesion properties of micronized drugs used in inhalation therapy. J. Pharm. Sci. 93:753–761 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. P. M. Young, R. Price, M. J. Tobyn, M. Buttrum, and F. Dey. Investigation into the effect of humidity on drug–drug interactions using the atomic force microscope. J. Pharm. Sci. 92:815–822 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. V. Berard, E. Lesniewska, C. Andres, D. Pertuy, C. Laroche, and Y. Pourcelot. Dry powder inhaler: influence of humidity on topology and adhesion studied by AFM7. Int. J. Pharm. 232:213–224 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. J. C. Hooton, C. S. German, S. Allen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, and P. M. Williams. An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles 1. Pharm. Res. 21:953–961 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. C. G. Peng, A. H. L. Chow, and C. K. Chan. Study of the hygroscopic properties of selected pharmaceutical aerosols using single particle levitation. Pharm. Res. 17:1104–1109 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. F. Podczeck, J. M. Newton, and M. B. James. Variations in the adhesion force between a drug and carrier particles as a result of changes in the relative humidity of the air. Int. J. Pharm. 149:151–160 (1997).

    Article  CAS  Google Scholar 

  18. F. Podczeck, J. M. Newton, and M. B. James. The influence of constant and changing relative humidity of the air on the autoadhesion force between pharmaceutical powder particles. Int. J. Pharm. 145:221–229 (1996).

    Article  CAS  Google Scholar 

  19. A. Elajnaf, P. A. Carter, and G. Rowley. Electrostatic characterisation of inhaled powders: effect of contact surface and relative humidity. Eur. J. Pharm. Sci. 29:375–384 (2006).

    Google Scholar 

  20. P. R. Byron, J. Peart, and J. N. Staniforth. Aerosol electrostatics. 1. Properties of fine powders before and after aerosolization by dry powder inhalers. Pharm. Res. 14:698–705 (1997).

    Article  PubMed  CAS  Google Scholar 

  21. V. A. Philip, R. C. Mehta, M. K. Mazumder, and P. P. Deluca. Effect of surface treatment on the respirable fractions of PLGA microspheres formulated for dry powder inhalers. Int. J. Pharm. 151:165–174 (1997).

    Article  CAS  Google Scholar 

  22. G. Rowley and L. A. Mackin. The effect of moisture sorption on electrostatic charging of selected pharmaceutical excipient powders. Powder Technol. 135:50–58 (2003).

    Article  Google Scholar 

  23. G. Rowley. Quantifying electrostatic interactions in pharmaceutical solid systems. Int. J. Pharm. 227:47–55 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. F. S. Bennett, P. A. Carter, G. Rowley, and Y. Dandiker. Modification of electrostatic charge on inhaled carrier lactose particles by addition of fine particles. Drug Dev. Ind. Pharm. 25:99–103 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. M. Murtomaa, V. Mellin, P. Harjunen, T. Lankinen, E. Laine, and V. P. Lehto. Effect of particle morphology on the triboelectrification in dry powder inhalers. Int. J. Pharm. 282:107–114 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. M. Murtomaa, S. Strengell, E. Laine, and A. Bailey. Measurement of electrostatic charge of an aerosol using a grid-probe. J. Electrost. 58:197–207 (2003).

    Article  Google Scholar 

  27. M. Dawson, P. Burnell, W. Balachandran, and S. Sivathasan. A novel bipolar charge measurement system for characterising aerosols. In R. Dalby, P. R. Byron, J. Peart, and S. Farr (eds.), Respiratory Drug Delivery VIII, 2002, pp. 443–445.

  28. W. Glover and H. K. Chan. Electrostatic charge characterization of pharmaceutical aerosols using electrical low-pressure impaction (ELPI). J. Aerosol Sci. 35:755–764 (2004).

    Article  CAS  Google Scholar 

  29. G. M. Richardson and R. S. Malthus. Salts for the static control of humidity at relatively low levels. J. Appl. Chem. 557–567 (1955).

  30. M. Marjamaki, J. Keskinen, D. R. Chen, and D. Y. H. Pui. Performance evaluation of the electrical low-pressure impactor (ELPI)4. J. Aerosol Sci. 31:249–261 (2000).

    Article  CAS  Google Scholar 

  31. C. H. Giles, T. H. Macewan, S. N. Nakhwa, and D. Smith. Studies in Adsorption. Part XI. A System of Classification of Solution Adsorption Isotherms, and Its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids. J. Chem. Soc. 3973–3993 (1960).

  32. G. Buckton and P. Darcy. The use of gravimetric studies to assess the degree of crystallinity of predominantly crystalline powders. Int. J. Pharm. 123:265–271 (1995).

    Article  CAS  Google Scholar 

  33. P. M. Young, S. Edge, D. Traini, M. D. Jones, R. Price, D. El-Sabawi, C. Urry, and C. Smith. The influence of dose on the performance of dry powder inhalation systems 1. Int. J. Pharm. 296:26–33 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. D. Traini, P. M. Young, M. D. Jones, S. Edge, and R. Price. Comparative study of erythritol and lactose monohydrate as carriers for inhalation: atomic force microscopy and in vitro correlation. Eur. J. Pharm. Sci. 27:243–251 (2006).

    Article  PubMed  CAS  Google Scholar 

  35. H. Steckel, P. Markefka, H. teWierik, and R. Kammelar. Functionality testing of inhalation grade lactose 12. Eur. J. Pharm. Biopharm. 57:495–505 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. T. Srichana, G. P. Martin, and C. Marriott. Dry powder inhalers: the influence of device resistance and powder formulation on drug and lactose deposition in vitro. Eur. J. Pharm. Sci. 7:73–80 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, P.M., Sung, A., Traini, D. et al. Influence of Humidity on the Electrostatic Charge and Aerosol Performance of Dry Powder Inhaler Carrier based Systems. Pharm Res 24, 963–970 (2007). https://doi.org/10.1007/s11095-006-9218-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9218-8

Key words

Navigation