Skip to main content
Log in

A complementarity approach for the computation of periodic oscillations in piecewise linear systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Piecewise linear (PWL) systems can exhibit quite complex behaviours. In this paper, the complementarity framework is used for computing periodic steady-state trajectories belonging to linear time-invariant systems with PWL, possibly set-valued, feedback relations. The computation of the periodic solutions is formulated in terms of a mixed quadratic complementarity problem. Suitable anchor equations are used as problem constraints in order to determine the unknown period and to fix the phase of the steady-state oscillation. The accuracy of the complementarity problem solution is shown through numerical investigations of stable and unstable oscillations exhibited by practical PWL systems: a neural oscillator, a deadzone feedback system, a stick–slip system, a repressilator and a relay feedback system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. \(\text {vec}\{A\}\) denotes the column vector obtained by stacking in one column all the columns of the matrix A. By \(\text {vec}(c_1, c_2, \ldots ,c_n)\) we will denote the column obtained by stacking all the \(c_i\) columns, even when they have a different number of components.

References

  1. Stern, T.E.: Piecewise-linear network theory. Technical report, PhD thesis, MIT, Research Laboratory of Electronics, Cambridge, MA, USA (1956)

  2. Camlibel, M.K., Heemels, W.P.M.H., van der Schaft, A.J., Schumacher, J.M.: Switched networks and complementarity. IEEE Trans. Circuits Syst. I Reg. Pap. 50(8), 1036–1046 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Acary, V., Bonnefon, O., Brogliato, B.: Time-stepping numerical simulation of switched circuits within the nonsmooth dynamical systems approach. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(7), 1042–1055 (2010)

    Article  Google Scholar 

  4. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  5. Melin, J., Hultgren, A., Lindstrom, T.: Two types of limit cycles of a resonant converter modelled by three-dimensional system. Nonlinear Anal. Hybrid Syst. 2(4), 1275–1286 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yang, X.-S., Chen, G.: Limit cycle and chaotic invariant sets in autonomous hybrid planar systems. Nonlinear Anal. Hybrid Syst. 2(3), 952–957 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aprille, T., Trick, T.: A computer algorithm to determine the steady-state response of nonlinear oscillators. IEEE Trans. Circuit Theory 19(4), 354–360 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Flieller, D., Riedinger, P., Louis, J.P.: Computation and stability of limit cycles in hybrid systems. Nonlinear Anal. Theory Methods Appl. 64(2), 352–367 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, D., Xu, J.: A new method to determine the periodic orbit of a nonlinear dynamic systems and its period. Eng. Comput. 20(4), 316–322 (2005)

    Article  Google Scholar 

  10. Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Springer, London (2004)

    Book  MATH  Google Scholar 

  11. Theodosiou, C., Pournaras, A., Natsiavas, S.: On periodic steady state response and stability of Filippov-type mechanical models. Nonlinear Dyn. 66(3), 355–376 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bizzarri, F., Brambilla, A., Gajani, G.S.: Steady state computation and noise analysis of analog mixed signal circuits. IEEE Trans. Circuits Syst. I Reg. Pap. 59(3), 541–554 (2012)

    Article  MathSciNet  Google Scholar 

  13. Leine, R.I., Van Campen, D.H., De Kraker, A.: Stick–slip vibrations induced by alternate friction models. Nonlinear Dyn. 16(1), 41–54 (1998)

    Article  MATH  Google Scholar 

  14. Van De Vrande, B.L., Van Campen, D.H., De Kraker, A.: An approximate analysis of dry-friction-induced stick–slip vibrations by smoothing procedure. Nonlinear Dyn. 19(2), 157–169 (1999)

    MATH  Google Scholar 

  15. Thota, P., Dankowicz, H.: TC-HAT (\(\hat{TC}\)): a novel toolbox for the continuation of periodic trajectories in hybrid dynamical systems. SIAM J. Appl. Dyn. Syst. 7(4), 1283–1322 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lu, C.-J., Lin, Y.-M.: A modified incremental harmonic balance method for rotary periodic motions. Nonlinear Dyn. 66(4), 781–788 (2011)

    Article  MathSciNet  Google Scholar 

  17. Bonnin, M., Gilli, M., Civalleri, P.P.: A mixed time–frequency-domain approach for the analysis of a hysteretic oscillator. IEEE Trans. Circuits Syst. II Exp. Br. 52(9), 525–529 (2005)

    Article  Google Scholar 

  18. Brambilla, A., Gruosso, G., Storti Gajani, G.: MTFS mixed time-frequency method for the steady-state analysis of almost-periodic nonlinear circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31(9), 1346–1355 (2012)

    Article  Google Scholar 

  19. Duarte, F.B., Tenreiro Machado, J.: Fractional describing function of systems with Coulomb friction. Nonlinear Dyn. 56(4), 381–387 (2009)

    Article  MATH  Google Scholar 

  20. Huang, Y.-J., Wang, Y.-J.: Steady-state analysis for a class of sliding mode controlled systems using describing function method. Nonlinear Dyn. 30(3), 223–241 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Engelberg, S.: Limitations of the describing function for limit cycle prediction. IEEE Trans. Autom. Control 47(11), 1887–1890 (2002)

    Article  MathSciNet  Google Scholar 

  22. Vasca, F., Iannelli, L., Camlibel, M.K.: A new perspective for modeling power electronics converters: complementarity framework. IEEE Trans. Power Electron. 24(2), 456–468 (2009)

    Article  Google Scholar 

  23. Schumacher, J.M.: Complementarity systems in optimization. Math. Program. 101(1), 263–296 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sessa, V., Iannelli, L., Vasca, F.: A complementarity model for closed-loop power converters. IEEE Trans. Power Electron, 29(12), 6821–6835 (2014)

  25. van der Schaft, A.J., Schumacher, J.M.: Complementarity modeling of hybrid systems. IEEE Trans. Autom. Control 43, 483–490 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Heemels, W.P.M.H., De Schutter, B., Bemporad, A.: Equivalence of hybrid dynamical model. Automatica 37(7), 1085–1091 (2001)

    Article  MATH  Google Scholar 

  27. Iannelli, L., Vasca, F.: Computation of limit cycles and forced oscillations in discrete-time piecewise linear feedback systems through a complementarity approach. In: 47th IEEE Conference on Decision and Control, pp. 1169–1174, Cancun, Mexico (2008)

  28. Iannelli, L., Vasca, F., Sessa, V.: Computation of limit cycles in Lur’e systems. In: American Control Conference, pp. 1402–1407, San Francisco, CA, USA (2011)

  29. Sessa, V., Iannelli, L., Vasca, F.: Mixed linear complementarity problems for the analysis of limit cycles in piecewise linear systems. In: The 51st IEEE Conference on Decision and Control, pp. 1023–1028, Maui, Hawaii, USA (2012)

  30. Sessa, V., Iannelli, L., Acary, V., Brogliato, B., Vasca, F.: Computing period and shape of oscillations in piecewise linear Lur’e systems: a complementarity approach. In: The 52nd IEEE Conference on Decision and Control, pp. 4680–4685, Florence, Italy (2013)

  31. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Operations Research. Springer, New York (2003)

    MATH  Google Scholar 

  32. Dirkse, S.P., Ferris, M.C.: The PATH solver: a non-monotone stabilization scheme for mixed complementarity problems. Optim. Methods Softw. 5, 123–156 (1995)

    Article  Google Scholar 

  33. Cottle, R., Pang, J., Stone, R.: The Linear Complementarity Problem, 2nd edn. Academic Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  34. Gowda, M.S., Pang, J.: Stability analysis of variational inequalities and nonlinear complementarity problems, via the mixed linear complementarity problem and degree theory. Math. Oper. Res. 19(4), 831–879 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Farkas, M.: Periodic Motions. Series in Applied Mathematical, Sciences edn. Springer, New York (1994)

    Book  Google Scholar 

  36. Doedel, E.J.: AUTO: a program for the automatic bifurcation analysis of autonomous systems. Congr. Numer. 30, 1265–1284 (1981)

    MathSciNet  MATH  Google Scholar 

  37. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, Chichester (1995)

    Book  MATH  Google Scholar 

  38. Seydel, R.U.: Practical Bifurcation and Stability Analysis. Interdisciplinary Applied Mathematics, 3rd edn. Springer, New York (1988)

    MATH  Google Scholar 

  39. Acary, V.: Time-stepping via complementarity. In: Vasca, F., Iannelli, L. (eds.) Dynamics and Control of Switched Electroinic Systems, Advances in Industrial Control. Springer, London (2012)

    Google Scholar 

  40. Han, L., Tiwari, A., Camlibel, M.K., Pang, J.-S.: Convergence of time-stepping for passive and extended linear complementarity systems. SIAM J. Numer. Anal. 47(5), 3768–3796 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pang, J.-S., Stewart, D.E.: Differential variational inequalities. Math. Program. 113, 345–424 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Matsuoka, K.: Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol. Cybern. 52, 367376 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. Goncalves, J.M.: Region of stability for limit cycles in piecewise linear systems. IEEE Trans. Autom. Control 50(11), 1877–1882 (2005)

    Article  Google Scholar 

  44. Hu, T., Thibodeau, T., Teel, T.R.: A unified Lyapunov approach to analysis of oscillations and stability for systems with piecewise linear elements. IEEE Trans. Autom. Control 55(12), 2864–2869 (2010)

    Article  MathSciNet  Google Scholar 

  45. Khalil, H.K.: Nonlinear Systems. Prentice Hall, New Jersey (2002)

    MATH  Google Scholar 

  46. Heemels, W.P.M.H., Camlibel, M.K., Schumacher, J.M.: A time-stepping method for relay systems. In: 39th IEEE Conference on Decision and Control, pp. 4461–4466, Sydney, Australia (2000)

  47. Astrom, K.J., Canudas De Wit, C.: Revisiting the LuGre friction model. IEEE Control Syst. Mag. 28(6), 101–114 (2008)

    Article  MathSciNet  Google Scholar 

  48. Tonnelier, A.: Cyclic negative feedback systems: what is the chance of oscillation? Bull. Math. Biol. 76(5), 1155–1193 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Acary, V., de Jong, H., Brogliato, B.: Numerical simulation of piecewise-linear models of gene regulatory networks using complementarity systems. Phys. D Nonlinear Phenom. 269, 103–119 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Bernardo, M., Budd, C., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems, vol. 163. Springer, London (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Sessa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sessa, V., Iannelli, L., Vasca, F. et al. A complementarity approach for the computation of periodic oscillations in piecewise linear systems. Nonlinear Dyn 85, 1255–1273 (2016). https://doi.org/10.1007/s11071-016-2758-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2758-5

Keywords

Navigation