Skip to main content

Advertisement

Log in

Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: advantages and limitations

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Empirical multivariate predictive models represent an important tool to estimate gully erosion susceptibility. Topography, lithology, climate, land use and vegetation cover are commonly used as input for these approaches. In this paper, two multivariate predictive models were generated for two gully erosion processes in San Giorgio basin (Italy) and Mula River basin (Spain) using only topographical attributes as independent variables. Initially, nine models (five for San Giorgio and four for Mula) with pixel sizes ranging from 2 to 50 m were generated, and validation statistics were calculated to estimate the optimal pixel size. The best models were selected based on model performance using the area under the receiver operating characteristic (AUC) curve and the generalized cross-validation. The best pixel size was 4 m in the San Giorgio basin and 20 m in the Mula basin. The finest resolution was not necessarily the best; rather, the relationship between digital elevation model resolution and size of the landform was important. The two selected models showed an excellent performance with AUC values of 0.859 and 0.826 for San Giorgio and Mula, respectively. The Topographic Wetness Index and the general curvature were identified as key topographical attributes in San Giorgio and Mula basins, respectively. Both attributes were related to the processes observed in the field and described in the literature. Finally, maps of gully erosion susceptibility were produced for each basin. These maps showed that 22 and 20 % of San Giorgio and Mula basins, respectively, present favourable conditions for the development of gullies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akgün A, Türk N (2011) Mapping erosion susceptibility by a multivariate statistical method: a case study from the Ayvalık region, NW Turkey. Comput Geosci 37:1515–1524. doi:10.1016/j.cageo.2010.09.006

    Article  Google Scholar 

  • Alonso Sarria F, Romero Díaz A, Ruíz Sinoga JD, Belmonte Serrato F (2011) Gullies and badland landscapes in Neogene basins, region of Murcia, Spain. Landf Anal 17:161–165

    Google Scholar 

  • Beguería S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazard 37:315–329. doi:10.1007/s11069-005-5182-6

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Bonacina LCW (1945) Orographic rainfall and its place in the hydrology of the globe. Q J R Meteorol Soc 71:41–55. doi:10.1002/qj.49707130705

    Article  Google Scholar 

  • Chang KT, Tsai BW (1991) The effect of DEM resolution on slope and aspect mapping. Cartogr Geogr Inf Syst 18:69–77

    Article  Google Scholar 

  • Chaplot V (2013) Impact of terrain attributes, parent material and soil types on gully erosion. Geomorphology 186:1–11. doi:10.1016/j.geomorph.2012.10.031

    Article  Google Scholar 

  • Conforti M, Aucelli PC, Robustelli G, Scarciglia F (2011) Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Nat Hazard 56:881–898. doi:10.1007/s11069-010-9598-2

    Article  Google Scholar 

  • Conoscenti C, Agnesi V, Angileri S, Cappadonia C, Rotigliano E, Märker M (2013) A GIS-based approach for gully erosion susceptibility modelling: a test in Sicily, Italy. Environ Earth Sci 70:1179–1195. doi:10.1007/s12665-012-2205-y

    Article  Google Scholar 

  • Conoscenti C, Angileri S, Cappadonia C, Rotigliano E, Agnesi V, Märker M (2014) Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomorphology 204:399–411. doi:10.1016/j.geomorph.2013.08.021

    Article  Google Scholar 

  • Craven P, Wahba G (1979) Smoothing noisy data with spline functions. Numer Math 31:377–403

    Article  Google Scholar 

  • De Veaux RD, Psichogios DC, Ungar LH (1993) A comparison of two nonparametric estimation schemes: MARS and neural networks. Comput Chem Eng 17:819–837

    Article  Google Scholar 

  • Deleo JM (1993) Receiver operating characteristic laboratory (ROCLAB): software for developing decision strategies that account for uncertainty. In: Proceedings of the second international symposium on uncertainty modelling and analysis, College Park, Computer Society Press, pp 318–325

  • Desmet PJJ, Poesen J, Govers G, Vandaele K (1999) Importance of slope gradient and contributing area for optimal prediction of the initiation and trajectory of ephemeral gullies. Catena 37:377–392

    Article  Google Scholar 

  • Dragut L, Shauppenlehner T, Muhar A, Strobl J, Blaschke T (2009) Optimization of scale and parametrization for terrain segmentation: an application to soil-landscape modeling. Comput Geosci 35:1875–1883

    Article  Google Scholar 

  • Esteves M, Lapetite JM (2003) A multi-scale approach of runoff generation in a Sahelian gully catchment: a case study in Niger. Catena 50:255–271

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–141

    Article  Google Scholar 

  • Geissen V, Kampichler C, López-de Llergo-Juarez JJ, Galindo-Acántara A (2007) Superficial and subterranean soil erosion in Tabasco, tropical Mexico: development of a decision tree modeling approach. Geoderma 139:277–287

    Article  Google Scholar 

  • Gómez Gutiérrez A, Schnabel S, Lavado Contador JF (2011) Procesos, factores y consecuencias de la erosión por cárcavas; trabajos desarrollados en la Península Ibérica. Boletín de la Asociación de Geógrafos Españoles 55:59–80

    Google Scholar 

  • Gómez-Gutiérrez Á, Schnabel S, Contador FL (2009a) Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain. Land Degrad Dev 20:535–550

    Article  Google Scholar 

  • Gómez-Gutiérrez Á, Schnabel S, Felicísimo ÁM (2009b) Modelling the occurrence of gullies in rangelands of southwest Spain. Earth Surf Proc Land 34:1894–1902

    Article  Google Scholar 

  • Gómez-Gutiérrez Á, Schnabel S, Lavado Contador JF (2009c) Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies. Ecol Model 220:3630–3637

    Article  Google Scholar 

  • Gómez-Gutiérrez Á, Schnabel S, De Sanjosé JJ, Contador FL (2012) Exploring the relationships between gully erosion and hydrology in rangelands of SW Spain. Zeitschrift fur Geomorphologie 56:27–44

    Article  Google Scholar 

  • Gómez-Gutiérrez Á, Schnabel S, Berenguer-Sempere F, Lavado-Contador F, Rubio-Delgado J (2014) Using 3D photo-reconstruction methods to estimate gully headcut erosion. Catena 120:91–101. doi:10.1016/j.catena.2014.04.004

    Article  Google Scholar 

  • Hancock GR, Evans KG (2005) Channel head location and characteristics using digital elevation models. Earth Surf Proc Land 31:809–824

    Article  Google Scholar 

  • Hengl T (2006) Finding the right pixel size. Comput Geosci 32:1283–1298. doi:10.1016/j.cageo.2005.11.008

    Article  Google Scholar 

  • Horn BKP (1981) Hill shading and the reflectance map. Proc IEEE 69:14–47

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York

    Book  Google Scholar 

  • Hughes AO, Prosser IP (2012) Gully erosion prediction across a large region: Murray-Darling Basin, Australia. Soil Res 50:267–277. doi:10.1071/SR12025

    Article  Google Scholar 

  • Hughes AO, Prosser IP, Stevenson J, Scott A, Lu H, Gallant J, Moran CJ (2001) Gully erosion mapping for the National land water resources audit. CSIRO Land and Water Technical report

  • IUSS Working Group WRB (2007) World Reference Base for Soil Resources 2006, first update 2007, World Soil Resources Reports No 103 edn. FAO, Rome

    Google Scholar 

  • Kheir RB, Wilson J, Deng Y (2007) Use of terrain variables for mapping gully erosion susceptibility in Lebanon. Earth Surf Process Landf 32:1770–1782

    Article  Google Scholar 

  • Lucà F, Conforti M, Robustelli G (2011) Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology 134:297–308. doi:10.1016/j.geomorph.2011.07.006

    Article  Google Scholar 

  • Magliulo P (2010) Soil erosion susceptibility maps of the Janare Torrent Basin (Southern Italy). J Maps 6:435–447. doi:10.4113/jom.2010.1116

    Article  Google Scholar 

  • Magliulo P (2012) Assessing the susceptibility to water-induced soil erosion using a geomorphological, bivariate statistics-based approach. Environ Earth Sci 67:1801–1820. doi:10.1007/s12665-012-1634-y

    Article  Google Scholar 

  • Märker M, Pelacani S, Schröder B (2011) A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy. Geomorphology 125:530–540. doi:10.1016/j.geomorph.2010.10.022

    Article  Google Scholar 

  • Merkel WH, Woodward DE, Clarke CD (1988) Ephemeral gully erosion model (EGEM). Model Agric For Rangel Hydrol Am Soc Agric Eng Publ 7:315–323

    Google Scholar 

  • Meyer JA, Martínez-Casasnovas JA (1999) Prediction of existing gully erosion in vineyard parcels of the NE Spain: a logistic modelling approach. Soil Tillage Res 50:319–331

    Article  Google Scholar 

  • Moeyersons J (2000) Desertification and man in Africa bulletin of the royal academy of overseas. Science 46:151–170

    Google Scholar 

  • Montgomery DR, Dietrich WE (1992) Channels initiation and the problem of landscape scale. Science 255:826–830

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) Landscape dissection and drainage area-slope thresholds. In: Kirkby MJ (ed) Process models and theoretical geomorphology. Wiley, Chichester, pp 221–245

    Google Scholar 

  • Morgan RPC, Mngomezulu D (2003) Threshold conditions for initiation of valley-side gullies in the Middle veld of Swaziland. Catena 50:401–414

    Article  Google Scholar 

  • Moore ID, Burch GJ (1986) Modelling erosion and deposition. Topographic effects. Transactions of the ASAE 29:1624–1630

  • Moore ID, Turner AK, Wilson JP, Jenson SK, Band LE (1993) GIS and land-surface-subsurface process modelling. In: Goodchild MF, Parks BO, Steyaert LT (eds) Environmental modelling with GIS, pp 213–230

  • Muñoz J, Felicísimo ÁM (2004) Comparison of statistical methods commonly used in predictive modelling. J Veg Sci 15:285–292. doi:10.1111/j.1654-1103.2004.tb02263.x

    Article  Google Scholar 

  • NATMUR-08 (2008) Vuelo fotogramétrico digital y levantamiento LIDAR de la Región de Murcia

  • Parkner T, Page MJ, Marutami T, Trustrum NA (2006) Development and controlling factors of gullies and gully complexes, East coast, New Zealand. Earth Surf Process Landf 31:187–199

    Article  Google Scholar 

  • Patton PC, Schumm SA (1975) Gully erosion, northwestern Colorado: a threshold phenomenon. Geology 3:88–90

    Article  Google Scholar 

  • Piest RF, Bradford JM, Wyatt GM (1975) Soil erosion and sediment transport from gullies. J Hydraul Div Am Soc Civ Eng 101:65–80

    Google Scholar 

  • Poesen J (2011) Challenges in gully erosion research. Landf Anal 17:5–9

    Google Scholar 

  • Poesen J, Nachtergaele J, Verstraeten G, Valentin C (2003) Gully erosion and environmental change: importance and research needs. Catena 50:91–133

    Article  Google Scholar 

  • Raaflaub LD, Collins MJ (2006) The effect of error in gridded digital elevation models on the estimation of topographic parameters. Environ Model Softw 21:710–732. doi:10.1016/j.envsoft.2005.02.003

    Article  Google Scholar 

  • Romero Díaz A, Marín Sanleandro P, Sánchez Soriano A, Belmonte Serrato F, Faulkner H (2007) The causes of piping in a set of abandoned agricultural terraces in southeast Spain. Catena 69:282–293

    Article  Google Scholar 

  • Romero Díaz A, Plaza Martínez JP, Sánchez Soriano A, Belmonte Serrato F, Ruíz-Sinoga JD (2009) Estimación de volúmenes de suelo perdido por procesos de erosión por piping. Sureste de España. In: Romero Díaz A, Belmonte Serrato F, Alonso Sarria F, López Bermúdez F (eds) Advances in studies on desertification. Editum, Murcia, pp 407–411

  • Romero Díaz A, Alonso Sarria F, Sánchez Soriano A (2011) Influencia de los factores topográficos en los procesos de piping, Murcia (España). Cuadernos de Investigación Geográfica 37:41–66

    Article  Google Scholar 

  • Schnabel S, Gómez Amelia D, Ceballos A (1998) Eventos extremos y erosión en cárcava. In: Gómez Ortíz A, Salvador Franch F (eds) Investigaciones recientes de la geomorfología española. Barcelona, pp 143–152

  • Sidorchuk A (1999) Dynamic and static models of gully erosion. Catena 37:401–414

    Article  Google Scholar 

  • Sidorchuk A (2005) Stochastic components in the gully erosion modelling. Catena 63:299–317

    Article  Google Scholar 

  • Svoray T, Michailov E, Cohen A, Rokah L, Sturm A (2012) Predicting gully initiation: comparing data mining techniques, analytical hierarchy processes and the topographic threshold. Earth Surf Proc Land 37:607–619. doi:10.1002/esp.2273

    Article  Google Scholar 

  • Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in a grid digital elevation models. Water Resour Res 33:309–320

  • Thompson JA, Bell JC, Butler CA (2001) Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling. Geoderma 100:67–89

    Article  Google Scholar 

  • Vandaele K, Poesen J, Govers G, Wesemael B (1996) Geomorphic threshold conditions for ephemeral gully incision. Geomorphology 16:161–173

    Article  Google Scholar 

  • Vergari F, Della Seta M, Del Monte M, Fredi P, Lupia Palmieri E (2013) Long- and short-term evolution of several Mediterranean denudation hot spots: the role of rainfall variations and human impact. Geomorphology 183:14–27. doi:10.1016/j.geomorph.2012.08.002

    Article  Google Scholar 

  • Volo ATA V (2007–2008) Modello digitale del terrreno Regione Siciliana

  • Wade A (1935) The relationship between topography and geology. Aust Surv 5:367–371. doi:10.1080/00050326.1935.10436440

    Article  Google Scholar 

  • Wolman MG (1959) Factors influencing erosion of a cohesive river bank. Am J Sci 257:204–216

    Article  Google Scholar 

  • Wu Y, Cheng H (2005) Monitoring of gully erosion on the Loess Plateau of China using a global positioning system. Catena 63:154–166

    Article  Google Scholar 

  • Wu S, Li J, Huang GH (2007) Modeling the effects of elevation data resolution on the performance of topography-based watershed runoff simulation. Environ Model Softw 22:1250–1260. doi:10.1016/j.envsoft.2006.08.001

    Article  Google Scholar 

  • Zakharov SA (1940) Importance of slope aspect and gradient for soil and vegetation distribution in the Great Caucasus. Journal Botanique de l’URSS 4–5:387–405

    Google Scholar 

  • Zevenbergen LW, Thorne CR (1987) Quantitative analysis of land surface topography. Earth Surf Proc and Land 12:47–56

  • Zhang W, Montgomery DR (1994) Digital elevation model grid size, landscape representation and hydrologic simulations. Water Resour Res 30:1019–1028

    Article  Google Scholar 

  • Zhou Q, Liu X (2004) Analysis of errors of derived slope and aspect related to DEM data properties. Comput Geosci 30:369–378

    Article  Google Scholar 

  • Zucca C, Canu A, Della Peruta R (2006) Effects of land use and landscape on spatial distribution and morphological features of gullies in an agropastoral area in Sardinia (Italy). Catena 68:87–95. doi:10.1016/j.catena.2006.03.015

    Article  Google Scholar 

Download references

Acknowledgments

Á. Gómez-Gutiérrez, C. Conoscenti, S. E. Angileri, E. Rotigliano and S. Schnabel have commonly shared all the parts of the research. Clare Hampton has linguistically edited the final version of this text. Finally, thanks to the Spanish Ministry of Science for economically supporting this work by AMID research project (CGL2011-23361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Gómez-Gutiérrez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Gutiérrez, Á., Conoscenti, C., Angileri, S.E. et al. Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: advantages and limitations. Nat Hazards 79 (Suppl 1), 291–314 (2015). https://doi.org/10.1007/s11069-015-1703-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-1703-0

Keywords

Navigation