Skip to main content

Advertisement

Log in

Gully erosion mapping based on hydro-geomorphometric factors and geographic information system

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Delineation of areas susceptible to gully erosion with high accuracy and low cost using significant factors and statistical model is essential. In the present study, a gully susceptibility erosion map (GEM) was developed using hydro-geomorphometric parameters and geographic information system in western Iran. For this aim, a geographically weighted regression (GWR) model was applied, and its results compared to frequency ratio (FreqR) and logistic regression (LogR) models. Almost twenty effective parameters on gully erosion were detected and mapped in the ArcGIS®10.7 environment. These layers and gully inventory maps (375 gully locations) were prepared using aerial photographs, Google Earth images, and field surveys divided into 70% and 30% (263 and 112 samples) ArcGIS®10.7. The GWR, FreqR, and LogR models were developed to generate gully erosion susceptibility maps. The area under the receiver/relative operating characteristic curve (AUC-ROC) was calculated to validate the generated maps. Based on the LogR model results, soil type (SOT), rock unit (RUN), slope aspect (SLA), Altitude (ALT), annual average precipitation (AAP), morphometric position index (MPI), terrain surface convexity (TSC), and land use (LLC) factors were the most critical conditioning parameters, respectively. The AUC-ROC results show the accuracy of 84.5%, 79.1%, and 78% for GWR, LogR, and FreqR models, respectively. The results show high performance for the GWR compared to LogR and FreqR multivariate and bivariate statistic models. The application of hydro-geomorphological parameters has a significant role in the gully erosion susceptibility zonation. The suggested algorithm can be used for natural hazards and human-made disasters such a gully erosion on a regional scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  • Akgün, A., & Türk, N. (2011). Mapping erosion susceptibility by a multivariate statistical method: a case study from the Ayvalık region, NW Turkey. Computers and geosciences, 37, 1515–1524.

    Article  Google Scholar 

  • Alencar, P. H. L., Simplício, A. A. F., & de Araújo, J. C. (2022). Entropy-based Model for Gully Erosion – A combination of probabilistic and deterministic components. Science of The Total Environment, 836, 155629.

    Article  CAS  Google Scholar 

  • Althuwaynee, O. F., Pradhan, B., Park, H. J., & Lee, J. H. (2014). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena. https://doi.org/10.1016/j.catena.2013.10.011

    Article  Google Scholar 

  • Amiri, M., & Pourghasemi, H. R. (2020). Mapping and preparing a susceptibility map of gully erosion using the MARS Model. In P. Shit, H. Pourghasemi, & G. Bhunia (Eds.), Gully Erosion Studies from India and Surrounding Regions. Advances in Science, Technology and Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham. https://doi.org/10.1007/978-3-030-23243-6_27

  • Amiri, M., Pourghasemi, H. R., Ghanbarian, G. A., & Afzali, S. F. (2019). Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms. Geoderma, 340, 55–69. https://doi.org/10.1016/j.geoderma.2018.12.042

    Article  Google Scholar 

  • Amundsen, R., Harden, J. W., & Singer, M. J. (1994). Factors of soil formation: A fiftieth anniversary retrospective. The Soil Science Society of America, Inc.

  • Arabameri, A., Yamani, M., Pradhan, B., Melesse, A., Shirani, K., & Tien Bui, D. (2019). Novel ensembles of COPRAS multi-criteria decision-making with logistic regression boosted regression tree and random forest for spatial prediction of gully erosion susceptibility. Science of the Total Environment, 688, 903–916.

    Article  CAS  Google Scholar 

  • Asteriou, D., & Hall, S. G. (2016). ARIMA models and the Box-Jenkins methodology. Applied Econometrics, 275–296. https://doi.org/10.1057/978-1-13741547-9_13

  • Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains. Central Japan. Geomorphology, 65(1–2), 15–31.

    Article  Google Scholar 

  • Azareh, A., Rahmati, O., Rafiei-Sardooi, E., Sankey, J. B., Lee, S., Shahabi, H., & Bin Ahmad, B. (2019). Modeling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models. Science of the Total Environment, 655, 684–696. https://doi.org/10.1016/j.scitotenv.2018.11.235

    Article  CAS  Google Scholar 

  • Boehner, J., & Selige, T. (2006). Spatial prediction of soil attributes using terrain analysis and climate regionalisation. In J. Boehner, K. R. McCloy, & J. Strobl (Eds.), 'SAGA - Analysis and Modelling Applications' (Vol. 115, pp. 13–27). Goettinger Geographische Abhandlungen.

  • Bonham-Carter, G. F. (1994). Geographic information system for geoscientists: Modelling with GIS (p. 398). Pergamon Press, 585 Oxford.

  • Bouramtane, T., Hilal, H., Rezende-Filho, A. T., Bouramtane, K., Barbiero, L., Abraham, S., Valles, V., Kacimi, I., Sanhaji, H., Torres-Rondon, L., Dantas de Castro, D., Santos, J. C. V., Quardi, J., Beqqali, E. L., & O., Kassou, N. & Morarech, M. (2022). Mapping gully erosion variability and susceptibility using remote sensing, multivariate statistical analysis, and machine learning in South Mato Grosso. Brazil. Geosciences, 12, 235. https://doi.org/10.3390/geosciences12060235

    Article  Google Scholar 

  • Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28, 281–298.

    Article  Google Scholar 

  • Capra, A., Di Stefano, C., Ferro, V., & Scicolone, B. (2009). Similarity between morphological characteristics of rills and ephemeral gullies in Sicily, Italy. Hydrological Processes, 3341, 3334–3341.

    Article  Google Scholar 

  • Casal, J., López, J., & Giráldez, J. (1999). Ephemeral gully erosion in southern Navarra (Spain). Catena, 36, 65–84.

    Article  Google Scholar 

  • Cevik, E., & Topal, T. (2003). GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental geology, 44, 949–962.

    Article  Google Scholar 

  • Chakrabortty, R., Pal, S. C., Chowdhuri, I., Malik, S., & Das, B. (2020). Assessing the importance of static and dynamic causative factors on erosion potentiality using SWAT, EBF with uncertainty and plausibility, logistic regression and novel ensemble model in a sub-tropical environment. The Indian Society of Remote Sensing, 48, 765–789. https://doi.org/10.1007/s12524-020-01110-x

  • Chaplot, V. (2013). Impact of terrain attributes, parent material, and soil types on gully erosion. Geomorphology, 186, 1–11.

    Article  Google Scholar 

  • Chen, J., Zhang, J., Peng, J., Zou, L., Fan, Y., Yang, F., & Hu, Z. (2023). Alp-valley and elevation effects on the reference evapotranspiration and the dominant climate controls in Red River Basin, China: Insights from geographical differentiation. Journal of Hydrology, 620(Part A), 129397. https://doi.org/10.1016/j.jhydrol.2023.129397.

  • Choubin, B., Rahmati, O., Tahmasebipour, N., Feizizadeh, B., & Pourghasemi, H. R. (2019). Application of fuzzy analytical network process model for analyzing the gully erosion susceptibility. Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques (pp. 105–125). Springer.

    Chapter  Google Scholar 

  • Conforti, M., Aucelli, P. P., Robustelli, G., & Scarciglia, F. (2011). Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural Hazards, 56, 881–898.

    Article  Google Scholar 

  • Conoscenti, C., Angileri, S., Cappadonia, C., Rotigliano, E., Agnesi, V., & Märker, M. (2014). Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology, 204, 399–411.

    Article  Google Scholar 

  • Craney, T. A., & Surles, J. G. (2002). Model-dependent variance inflation factor cutoff values[J]. Quality Engineering, 2002(14), 391–403.

    Article  Google Scholar 

  • Dahal, B., & Dahal, R. (2017). Landslide hazard map: Tool for optimization of low-cost mitigation. Geoenvironmental Disasters, 4(1), 8. https://doi.org/10.1186/s40677-017-0071-3

    Article  Google Scholar 

  • Dai, F., Lee, C., Li, J., & Xu, Z. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 40, 381–391.

    Article  Google Scholar 

  • Dewitte, O., Daoudi, M., Bosco, C., & Van Den Eeckhaut, M. (2015). Predicting the susceptibility to gully initiation in data-poor regions. Geomorphology, 228, 101–115.

    Article  Google Scholar 

  • Ding, L., Qin, F., Fang, H., Liu, H., Zhang, B., Shu, C., Deng, Q., Liu, G., & Yang, Q. (2017). Morphology and controlling factors of the longitudinal profile of gullies in the Yuanmou dry-hot valley. Mountain Science, 14(4), 674–693.

    Article  Google Scholar 

  • Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carre, G., Marquez, J. R. G., Gruber, B., Lafourcade, B., Leitao, P. J., Munkemuller, T., McClean, C., Osborne, P. E., Reineking, B., Schroder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 027–046.

    Article  Google Scholar 

  • Dube, F., Nhapi, I., Murwira, A., Gumindoga, W., Goldin, J., & Mashauri, D. (2014). Potential of the weight of evidence modeling for gully erosion hazard assessment in Mbire District-Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 67, 145–152.

    Article  Google Scholar 

  • FAO & ITPS. (2015). Status of the world’s soil resources (SWSR) – main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy.

  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships/CA. Stewart Fotherington, Chris Brunsdon, and Martin Charlton. Wiley.

  • Gayen, A., Haque, S. M., & Saha, S. (2020). Modeling of gully erosion based on random forest using GIS and R. In P. Shit, H. Pourghasemi, & G. Bhunia (Eds.), Gully Erosion Studies from India and Surrounding Regions. Advances in Science, Technology and Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham. https://doi.org/10.1007/978-3-030-23243-6_3

  • Gayen, A., Pourghasemi, H. R., Saha, S., Keesstra, S., & Bai, S. (2019). Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Science of the Total Environment, 668, 124–138. https://doi.org/10.1016/j.scitotenv.2019.02.436

    Article  CAS  Google Scholar 

  • Geological Survey and Mineral Exploration of Iran (GSI). (1997). Map of the geological quadrangle of Ilam in scale of 100,000th. https://gsi.ir/en/map

  • Gunz, M., & Vanacker, V. (2012). Logistic regression applied to natural hazards: Rare event logistic regression with replications. Natural Hazards and Earth System Sciences, 12, 1937–1947.

    Article  Google Scholar 

  • Gutiérrez, Á. G., Schnabel, S., & Contador, J. F. L. (2009). Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies. Ecological modeling, 220, 3630–3637.

    Article  Google Scholar 

  • Hembram, T. K., Paul, G. C., & Saha, S. (2020). Modeling of gully erosion risk using new ensemble of conditional probability and index of entropy in Jainti River basin of Chotanagpur Plateau Fringe Area, India. Applied Geomatic, 12, 337–360. https://doi.org/10.1007/s12518-020-00301-y

    Article  Google Scholar 

  • Hembram, T.k., Paul, G.C. & Saha, S. (2019). Spatial prediction of susceptibility to gully erosion in Jainti River basin, Eastern India: A comparison of information value and logistic regression models. Modeling Earth Systems Environment, 5, 689–708. https://doi.org/10.1007/s40808-018-0560-8

    Article  Google Scholar 

  • Hengl, T., & Reuter, H. I. (Eds.). (2008). Geomorphometry: Concepts, software, applications. Developments in Soil Science (Vol. 33, p. 772). Elsevier.

  • Hong, H., Naghibi, S. A., Dashtpagerdi, M. M., Pourghasemi, H. R., & Chen, W. (2017). A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China. Arabian Journal of Geosciences, 10, 167.

    Article  Google Scholar 

  • Hook, P. B., & Burke, I. C. (2000). Biogeochemistry in a shortgrass landscape: Control by topography, soil texture, and microclimate. Ecology, 81, 2686–2703.

    Article  Google Scholar 

  • Hosseinalizadeh, M., Kariminejad, N., Chen, W., Pourghasemi, H. R., Alinejad, M., Mohammadian, A., Behbahani, M., & Tiefenbacher, J. P. (2019). Spatial modeling of gully head cuts using UAV data and four best-first decision classifier ensembles (BFTree, Bag-BFTree, RS-BFTree, and RF-BFTree). Geomorphology, 329, 184–193. https://doi.org/10.1016/j.geomorph.2019.01.006

    Article  Google Scholar 

  • Hosseinalizadeh, M., Kariminejad, N., Chen, W., Pourghasemi, H. R., Alinejad, M., Mohammadian Behbahani, A., & Tiefenbacher, J. P. (2019). Gully’s head cut susceptibility modeling using functional trees, naïve Bayes tree, and random forest models. Geoderma, 342, 1–11. https://doi.org/10.1016/j.geoderma.2019.01.050

    Article  Google Scholar 

  • Hosseinalizadeh, M., Kariminejad, N., Rahmati, O., Keesstra, S., Alinejad, M., & Behbahani, A. M. (2019). How can statistical and artificial intelligence approaches predict piping erosion susceptibility? Science of the Total Environment, 646, 1554–1566.

    Article  CAS  Google Scholar 

  • Javidan, N., Kavian, A., Pourghasemi, H. R., Conoscenti, C., & Jafarian, Z. (2020). Data mining technique (maximum entropy model) for mapping gully erosion susceptibility in the Gorganrood watershed, Iran. In P. Shit, H. Pourghasemi, & G. Bhunia (Eds.), Gully Erosion Studies from India and Surrounding Regions. Advances in Science, Technology and Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham. https://doi.org/10.1007/978-3-030-23243-629

  • Jenny, H. (1941). Factors of soil formation: A system of quantitative pedology (Kindle, p. 320). McGraw-Hill.

    Google Scholar 

  • Kuhnert, P. M., Henderson, A. K., Bartley, R., & Herr, A. (2010). Incorporating uncertainty in gully erosion calculations using the random forests modeling approach. Environmetrics, 21, 493–509.

    Google Scholar 

  • Kutner, M. H., Nachtsheim, C., & Neter, J. (2004). Applied linear regression models. McGraw-Hill/Irwin.

  • Lee, M.-J., Kang, J.-E., & Jeon, S. (2012). Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. In Geoscience and Remote Sensing Symposium (IGARSS) (pp. 895-898). 2012 IEEE International. IEEE.

  • Lee, S., & Sambath, T. (2006). Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50, 847–855. https://doi.org/10.1007/s00254-006-0256-7

    Article  Google Scholar 

  • Li, Y., Duan, X., Li, Y., Li, Y., & Zhang, L. (2021). Interactive effects of land use and soil erosion on soil organic carbon in the dry-hot valley region of southern China. Catena, 201, 105187. https://doi.org/10.1016/j.catena.2021.105187

  • Lombardo, L., & Mai, P. M. (2018). Presenting logistic regression-based landslide susceptibility results. Engineering Geology, 244, 14–24.

    Article  Google Scholar 

  • Luca, F., Conforti, M., & Robustelli, G. (2011). Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria. South Italy. Geomorphology, 134(3–4), 297–308.

    Article  Google Scholar 

  • Maerker, M., Quénéhervé, G., Bachofer, F., & Mori, S. (2015). A simple DEM assessment procedure for gully system analysis in the Lake Manyara area, northern Tanzania. Natural Hazards, 79(1), 235–253.

    Article  Google Scholar 

  • Marco, K. (2006). A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology, 71(1–4), 17–28.

    Google Scholar 

  • Marquardt, D. W. (1970). Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12, 591–612.

    Article  Google Scholar 

  • Meten, M., Bhandary, N. P., & Yatabe, R. (2015). GIS-based frequency ratio and logistic regression modeling for landslide susceptibility mapping of Debre Sina area in central Ethiopia. Mountain Science, 12, 1355–1372.

    Article  Google Scholar 

  • Moore, I., & Burch, G. (1986). Sediment transport capacity of sheet and rill flow: Application of unit stream power theory. Water Resources Research, 22, 1350–1360.

    Article  Google Scholar 

  • Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modeling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30.

    Article  Google Scholar 

  • O’ Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity., 41(5), 673–690.

    Article  Google Scholar 

  • Pal, S. C., Arabameri, A., Blaschke, T., Chowdhuri, I., Saha, A., Chakrabortty, R., Lee, S., & Band, S. S. (2020). Ensemble of machine-learning methods for predicting gully erosion susceptibility. Remote Sensing, 12, 3675. https://doi.org/10.3390/rs12223675

  • Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C. (2003). Gully erosion and environmental change: importance and research needs. Catena, 50, 91–133.

    Article  Google Scholar 

  • Pourghasemi, H. R., Gayen, A., Haque, S. M., & Bai, S. (2020a). Gully erosion susceptibility assessment through the SVM machine learning algorithm (SVM-MLA). In P. Shit, H. Pourghasemi, & G. Bhunia (Eds.), Gully Erosion Studies from India and Surrounding Regions. Advances in Science, Technology and Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham. https://doi.org/10.1007/978-3-030-23243-6_28

  • Pourghasemi, H. R., Moradi, H., & Aghda, S. F. (2013). Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Natural hazards, 69, 749–779.

    Article  Google Scholar 

  • Pourghasemi, H. R., Sadhasivam, N., Kariminejad, N., & Collins, A. L. (2020b). Gully erosion spatial modeling: Role of machine learning algorithms in selection of the best controlling factors and modeling process. Geoscience Frontiers, 11(6), 2207–2219. https://doi.org/10.1016/j.gsf.2020.03.005

  • Pradhan, B., & Lee, S. (2010). Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences, 60, 1037–1054.

    Article  Google Scholar 

  • Pradhan, B., & Youssef, A. M. (2010). Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arabian Journal of Geosciences, 3, 319–326.

    Article  Google Scholar 

  • Quinn, P. F., Beven, K. J., & Lamb, R. (1995). The ln (a/tan b) index: how to calculate it and how to use it within in the TOPMODEL framework. Hydrological Processes, 9, 161–182.

    Article  Google Scholar 

  • Rahmati, O., Haghizadeh, A., Pourghasemi, H. R., & Noormohamadi, F. (2016). Gully erosion susceptibility mapping: The role of GIS-based bivariate statistical models and their comparison. Natural Hazards, 82, 1231–1258.

    Article  Google Scholar 

  • Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H. R., & Feizizadeh, B. (2017). Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology, 298, 118–137.

    Article  Google Scholar 

  • Rasyid, A. R., Bhandary, N. P., & Yatabe, R. (2016). Performance of frequency ratio and logistic regression model in creating GIS-based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenvironmental Disasters, 3(1). https://doi.org/10.1186/s40677-016-0053-x

  • Razavi Termeh, S. V., Sadeghi-Niaraki, A., & Choi, S.-M. (2020). Gully erosion susceptibility mapping using artificial intelligence and statistical models. Geomatics, Natural Hazards and Risk, 11(1), 821–844.

    Article  Google Scholar 

  • Razavi Termeh, S. V., Kornejady, A., Pourghasemi, H. R., & Keesstra, S. (2018). Flood susceptibility mapping using novel ensembles of adaptive neuro-fuzzy inference system and metaheuristic algorithms. Science of the Total Environment, 615, 438–451.

    Article  CAS  Google Scholar 

  • Refahi, H. (2009). Soil erosion by water: Conservation and control (p. 202). Tehran University Press.

  • Rengers, F., & Tucker, G. E. (2013). Analysis and modeling of gully headcut dynamics, North American high plains. Geophysical Research: Earth Surface, 119(5). https://doi.org/10.1002/2013JF002962

  • Romer, C., & Ferentinou, M. (2016). Shallow landslide susceptibility assessment in a semiarid environment-A Quaternary catchment of KwaZulu-Natal, South Africa. Engineering Geology, 201, 29–44.

    Article  Google Scholar 

  • Roy, J., & Saha, D. S. (2019). GIS-based gully erosion susceptibility evaluation using frequency ratio, cosine amplitude and logistic regression ensembled with fuzzy logic in Hinglo River Basin, India. Remote Sensing Applications: Society and Environment, 15, 100247. https://doi.org/10.1016/j.rsase.2019.100247

  • Rusco, E., Montanarella, L., & Bosco, C. (2008). Soil erosion: A main threats to the soils in Europe. In G. Tóth, L. Montanarella, & E. Rusco, (Eds.), Threats to Soil Quality in Europe (pp. 37–45). Luxembourg: European Commission Joint Research Centre.

  • Saha, S. (2017). Groundwater potential mapping using hierarchical analytical process: A study on Md. Bazar block of Birbhum District, West Bengal. Spatial Information Research, 25(4), 615–626.

  • Saha, A., Pal S. C., Arabameri, A., Chowdhuri, I., Rezaie, F., Chakrabortty, R., Roy, P., & Shit, M. (2021). Optimization modelling to establish false measures implemented with ex-situ plant species to control gully erosion in a monsoon-dominated region with novel in-situ measurements. Environmental Management, 287, 112284. https://doi.org/10.1016/j.jenvman.2021.112284

  • Seibert, J., Stendahl, J., & Sorensen, R. (2007). Topographical influences on soil properties in boreal forests. Geoderma, 141(1–2), 139–148. https://doi.org/10.1016/j.geoderma.2007.05.013

    Article  CAS  Google Scholar 

  • Sela, S., Svoray, T., & Assouline, S. (2012). Soil water content variability at the hillslope scale: Impact of surface sealing. Water Resources Research, 48(3), 1–14.

    Article  Google Scholar 

  • Shahabi, H., Hashim, M., & Ahmad, B. B. (2015). Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin. Iran. Environmental Earth Sciences, 73, 8647–8668.

    Article  Google Scholar 

  • Shellberg, J. G., Spencer, J., Brooks, A. P., & Pietsch, T. J. (2016). Degradation of the Mitchell River fluvial megafan by alluvial gully erosion increased by post-European land use change, Queensland, Australia. Geomorphology, 266, 105–120.

    Article  Google Scholar 

  • Shirani, K., Pasandi, M., & Arabameri, A. (2018). Landslide susceptibility assessment by Dempster-Shafer and index of entropy models, Sarkhoun basin, Southwestern Iran. Natural Hazards, 93(3), 1379–1418.

    Article  Google Scholar 

  • Shit, P. K., Bhunia, G. S., & Pourghasemi, H. R. (2020). Gully erosion susceptibility mapping based on bayesian weight of evidence. In P. Shit, H. R, Pourghasemi, & G. Bhunia, (Eds.), Gully Erosion Studies from India and Surrounding Regions. Advances in Science, Technology and Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham. https://doi.org/10.1007/978-3-030-23243-6_8

  • Tien Bui, D., Pradhan, B., Revhaug, I., Nguyen, D. B., Pham, H. V., & Bui, Q. N. (2015). A novel hybrid evidential belief function-based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang Son city area (Vietnam). Geomatics, Natural Hazards and Risk, 6, 243–271.

    Article  Google Scholar 

  • Tien Bui, D., Shirzadi, A., Shahabi, H., Chapi, K., Omidavr, E., Pham, B. T., Talebpour Asl, D., Khaledian, H., Pradhan, B., & Panahi, M. (2019). A novel ensemble artificial intelligence approach for gully erosion mapping in a semi-arid watershed (Iran). Sensors, 19(11), 24–44.

    Article  Google Scholar 

  • Tien Bui, D., Tuan, T. A., Klempe, H., Pradhan, B., & Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13, 361–378. https://doi.org/10.1007/s10346-015-0557-6

    Article  Google Scholar 

  • Torri, D., Poesen, J., Borselli, L., Bryan, R., & Rossi, M. (2012). Spatial variation of bed roughness in eroding rills and gullies. Catena, 90, 76–86.

    Article  Google Scholar 

  • Tsangaratos, P., & Benardos, A. (2014). Estimating landslide susceptibility through an artificial neural network classifier. Natural hazards, 74, 1489–1516.

    Article  Google Scholar 

  • Valentin, C., Poesen, J., & Li, Y. (2005). Gully erosion: Impacts, factors, and control. Catena, 63, 132–153.

    Article  CAS  Google Scholar 

  • Van Den Eeckhaut, M., Marre, A., & Poesen, J. (2010). Comparison of two landslide susceptibility assessments in the Champagne-Ardenne region (France). Geomorphology, 115, 141–155.

    Article  Google Scholar 

  • Weisberg, S., & Fox, J. (2011). An R companion to applied regression. SAGE Publications Inc.

    Google Scholar 

  • Wheeler, D. C. (2009). Simultaneous coefficient penalization and model selection in geographically weighted regression: The geographically weighted lasso. Environment and Planning: A Economy and Space, 41, 722–742.

    Article  Google Scholar 

  • Wheeler, D. C., & Páez, A. (2010). Geographically weighted regression. In M. M. Fischer & A. Getis (Eds.), Handbook of applied spatial analysis: Software tools, methods and applications (pp. 461–486). Springer.

    Chapter  Google Scholar 

  • Yang, W., Deng, M., Tang, J., & Luo, L. (2022). Geographically weighted regression with the integration of machine learning for spatial prediction. Journal Geographical Systems. https://doi.org/10.1007/s10109-022-00387-5

    Article  Google Scholar 

  • Yujie, W., Zheng, L., Yong, Z., Tingting, C., Zhonglu, G., Chongfa, C. & Zhaoxia, L. (2022). Analysis of gully erosion susceptibility and spatial modelling using a GIS-based approach, Geoderma, 420, 115869. https://doi.org/10.1016/j.geoderma.2022.115869

  • Zabihi, M., Mirchooli, F., Motevalli, A., Darvishan, A. K., Pourghasemi, H. R., Zakeri, M. A., & Sadighi, F. (2018). Spatial modeling of gully erosion in Mazandaran Province, northern Iran. Catena, 161, 1–13.

    Article  Google Scholar 

  • Zheng, F. L. (2006). Effect of vegetation changes on soil erosion on the loess plateau1. Pedosphere, 16, 420–427.

    Article  Google Scholar 

  • Zhu, C., & Wang, X. (2009). Landslide susceptibility mapping: A comparison of information and weights-of evidence methods in Three Gorges Area. International Conference on Environmental Science and Information Application Technology, 2009, 342–346.

    Google Scholar 

Download references

Acknowledgements

The article has been prepared through a research project conducted by the authors and financially supported by Soil Conservation and Watershed Management Research Department, Isfahan Agricultural and Natural Resources, Research and Education Center, AREEO, Iran. The authors acknowledge the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Shirani.

Ethics declarations

Informed consent

The authors agree with the contents of the manuscript and have consented to the submission.

Consent for publication

The authors certify that the submission is original work and is not published/ under review at any other publication. All sources used are properly cited.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirani, K., Peyrowan, H., Shadfar, S. et al. Gully erosion mapping based on hydro-geomorphometric factors and geographic information system. Environ Monit Assess 195, 721 (2023). https://doi.org/10.1007/s10661-023-11197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11197-7

Keywords

Navigation