Skip to main content
Log in

Bright, water-soluble CeF3 photo-, cathodo-, and X-ray luminescent nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Bright, water-soluble CeF3 nanoparticles with small size and narrow size distribution have been synthesized using a simple co-precipitation method without any ligands. Size control of nanoparticles from 13 ± 2 to 9 ± 2 nm was achieved by varying the reaction time. Colloidal properties have been found to vary with pH and, independently, with dilution. The photoluminescence of the as-synthesized nanoparticles shows a highly photostable UV/Visible fluorescence band due to allowed 5d–4f transitions, also observed in the X-ray luminescence spectrum. This band is suitable for X-ray excitation of a range of photosensitizers. The photoluminescence quantum yield of nanoparticles was also determined to be 31 %. Using the measured fluorescence decay time of 25 ns, the radiative lifetime of Ce in CeF3 was found to be 80.6 ns. Both photoluminescence and cathodoluminescence emission are affected by the reaction time and measurement temperature. Electron-beam-induced defect annealing is also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson D (1989) Properties of the high-density scintillator cerium fluoride. Nucl Sci IEEE Trans 36:137–140

    Article  Google Scholar 

  • Anderson D (1990) Cerium fluoride: a scintillator for high-rate applications. Nucl Instrum Methods Phys Res Sect A 287:606–612

    Article  Google Scholar 

  • Bender CM, Burlitch JM, Barber D, Pollock C (2000) Synthesis and fluorescence of neodymium-doped barium fluoride nanoparticles. Chem Mater 12:1969–1976

    Article  Google Scholar 

  • Chao-Shu S et al (2000) Cascade energy transfer in CeF3 crystals. Chin Phys Lett 17:532

    Article  Google Scholar 

  • Chen W, Zhang J (2006) Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J Nanosci Nanotechnol 6:1159–1166

    Article  Google Scholar 

  • Chen D, Yu Y, Lin H, Huang P, Weng F, Shan Z, Wang Y (2009) CeF3-based glass ceramic: a potential luminescent host for white-light-emitting diode. Opt Lett 34:2882–2884

    Article  Google Scholar 

  • Del Sesto R et al (2007) Development of nanocomposite scintillators. LALP-07-030 Spring

  • Derenzo SE, Moses W, Cahoon J, Perera R, Litton J (1990) Prospects for new inorganic scintillators. Nucl Sci IEEE Trans 37:203–208

    Article  Google Scholar 

  • Diamente PR (2005) Development of water-soluble LaF3 nanoparticles as potential biolabels. University of Victoria, Victoria

    Google Scholar 

  • Dorenbos P (2005) Scintillation mechanisms in Ce3+ doped halide scintillators. Phys Status Solidi (a) 202:195–200

    Article  Google Scholar 

  • Dorenbos P (2010) Fundamental limitations in the performance of rm Ce3+-, rm Pr3+-, and rm Eu2+ -activated scintillators. IEEE Trans Nucl Sci 57:1162–1167

    Article  Google Scholar 

  • Gai S, Yang P, Li X, Li C, Wang D, Dai Y, Lin J (2011) Monodisperse CeF3, CeF3: Tb3+, and CeF3: Tb3+@ LaF3 core/shell nanocrystals: synthesis and luminescent properties. J Mater Chem 21:14610–14615

    Article  Google Scholar 

  • Ge J, Hu Y, Biasini M, Dong C, Guo J, Beyermann WP, Yin Y (2007) One-step synthesis of highly water-soluble magnetite colloidal nanocrystals chemistry-A. Eur J 13:7153–7161

    Article  Google Scholar 

  • Goldys EM (2009) Fluorescence applications in biotechnology and life sciences. Wiley, Hoboken

    Google Scholar 

  • Himel CM, Mayer RT (1970) 5-Dimethylaminonaphthalene-1-sulfonic acid (DANS acid) as standard for quantum yield of fluorescence. Anal Chem 42:130–132

    Article  Google Scholar 

  • Jacobsohn LG et al (2011) Fluoride nanoscintillators. J Nanomater 2011:42

    Google Scholar 

  • Kobayashi M et al (1991) Cerium fluoride, a highly radiation-resistive scintillator. Nucl Instrum Methods Phys Res Sect A 302:443–446

    Article  Google Scholar 

  • Liu Y, Chen W, Wang S, Joly AG (2008a) Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation. Appl Phys Lett 92:043901–043903

    Article  Google Scholar 

  • Liu Y, Chen W, Wang S, Joly AG, Westcott S, Woo BK (2008b) X-ray luminescence of LaF: Tb and LaF: Ce Tb water-soluble nanoparticles. J Appl Phys 103:063105

    Article  Google Scholar 

  • Lo Nigro R, Malandrino G, Fragala IL, Bettinelli M, Speghini A (2002) MOCVD of CeF3 films on Si (100) substrates: synthesis, characterization and luminescence spectroscopy. J Mater Chem 12:2816–2819

    Article  Google Scholar 

  • Mishra S et al (2013) A molecular precursor approach to monodisperse scintillating CeF 3 nanocrystals. Dalton Trans 42:12633–12643

    Article  Google Scholar 

  • Morgan NY, Kramer-Marek G, Smith PD, Camphausen K, Capala J (2009) Nanoscintillator conjugates as photodynamic therapy-based radiosensitizers: calculation of required physical parameters. Radiat Res 171:236–244

    Article  Google Scholar 

  • Moses W, Derenzo S (1989) Cerium fluoride, a new fast, heavy scintillator. Nucl Sci IEEE Trans 36:173–176

    Article  Google Scholar 

  • Moses W, Derenzo S, Weber M, Ray-Chaudhuri A, Cerrina F (1994) Scintillation mechanisms in cerium fluoride. J Lumin 59:89–100

    Article  Google Scholar 

  • Nikl M (2006) Scintillation detectors for X-rays. Meas Sci Technol 17:R37

    Article  Google Scholar 

  • Osiński M, Plumley JB, Withers NJ, Rivera AC, Akins BA, Sankar K, Smolyakov GA (2009) Lanthanide-halide-based nanoscintillators for portable radiological detectors, Invited Paper. In: Proc. of SPIE vol 7306, p 730617

  • Rodnyi P (2001) Progress in fast scintillators. Radiat Meas 33:605–614

    Article  Google Scholar 

  • Sankar K, Plumley JB, Akins BA, Memon TA, Withers NJ, Smolyakov GA, Osinski M (2009) Synthesis and characterization of scintillating cerium-doped lanthanum fluoride nanocrystals. SPIE BiOS: Biomedical Optics. International Society for Optics and Photonics, San Jose, pp 718909–718912

    Google Scholar 

  • Santra S et al (2006) Fluorescence lifetime measurements to determine the core–shell nanostructure of FITC-doped silica nanoparticles: an optical approach to evaluate nanoparticle photostability. J Lumin 117:75–82

    Article  Google Scholar 

  • Shi C et al (2002) The dynamics properties on luminescence of CeF3 crystals. Surf Rev Lett 9:371–374

    Article  Google Scholar 

  • Snigireva O, Solomonov V (2005) Role of the Ce2+ ions in cerium fluoride luminescence. Phys Solid State 47:1443–1445

    Article  Google Scholar 

  • Sun Z, Li Y, Zhang X, Yao M, Ma L, Chen W (2009) Luminescence and energy transfer in water soluble CeF3 and CeF3: Tb3+ nanoparticles. J Nanosci Nanotechnol 9:6283–6291

    Article  Google Scholar 

  • Wang F, Zhang Y, Fan X, Wang M (2006a) Facile synthesis of water-soluble LaF3: Ln3+ nanocrystals. J Mater Chem 16:1031–1034

    Article  Google Scholar 

  • Wang F, Zhang Y, Fan X, Wang M (2006b) One-pot synthesis of chitosan/LaF3: Eu3+ nanocrystals for bio-applications. Nanotechnology 17:1527

    Article  Google Scholar 

  • Wang Z-L et al (2006c) A facile synthesis and photoluminescent properties of redispersible CeF3, CeF3: Tb3+, and CeF3: Tb3+/LaF3 (core/shell) nanoparticles. Chem Mater 18:2030–2037

    Article  Google Scholar 

  • Wang J, Bo S, Song L, Hu J, Liu X, Zhen Z (2007) One-step synthesis of highly water-soluble LaF3: Ln3+ nanocrystals in methanol without using any ligands. Nanotechnology 18:465606

    Article  Google Scholar 

  • Weber G, Teale F (1957) Determination of the absolute quantum yield of fluorescent solutions. Trans Faraday Soc 53:646–655

    Article  Google Scholar 

  • Wiliyam Mashirev DVS, Dmitry (2012) Baranov production and study of cerium trifluoride single crystals for ionizing radiation detectors. In: The Sixth Jordan International chemical Engineering conference, Jordan

  • Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108:1067–1071

    Article  Google Scholar 

  • Wojtowicz A, Berman E, Koepke C, Lempicki A (1992) Stoichiometric cerium compounds as scintillators. I. CeF3. Nucl Sci IEEE Trans 39:494–501

    Article  Google Scholar 

  • Wojtowicz A, Balcerzyk M, Berman E, Lempicki A (1994) Optical spectroscopy and scintillation mechanisms of Cex La1−x F{3}. Phys Rev B 49:14880

    Article  Google Scholar 

  • Wu Q, Chen Y, Xiao P, Zhang F, Wang X, Hu Z (2008) Hydrothermal synthesis of cerium fluoride hollow nanostructures in a controlled growth microenvironment. J Phys Chem C 112:9604–9609

    Article  Google Scholar 

  • Zhu L, Li Q, Liu X, Li J, Zhang Y, Meng J, Cao X (2007) Morphological control and luminescent properties of CeF3 nanocrystals. J Phys Chem C 111:5898–5903

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Damian Gore and Mr. Russell Field, Macquarie University for their assistance with X-ray luminescence measurements. All fluorescence measurements were performed in Optical Characterization Facility, Linked Laboratory to AMMRF (Australian Microscopy and Microanalysis Research Facility). S.C. acknowledges the support of the MQRES scholarship from Macquarie University. This work is partially supported by Australian Research Council (ARC) through its Centre of Excellence scheme (CE140100003) to E.M. G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa M. Goldys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clement, S., Deng, W., Drozdowicz-Tomsia, K. et al. Bright, water-soluble CeF3 photo-, cathodo-, and X-ray luminescent nanoparticles. J Nanopart Res 17, 7 (2015). https://doi.org/10.1007/s11051-014-2833-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2833-0

Keywords

Navigation