Skip to main content
Log in

Manganous ion dictated morphology change and ferromagnetism in CdS nanocrystals

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report a simple chemical route for converting the dimorphic CdS nanocrystals into pure hexagonal structure by loading ~5 % Mn2+ into CdS in presence of a surfactant rather than under harsh conditions reported earlier. Differential scanning calorimetric measurement was used to quantify the percentages of cubic and hexagonal components at lower manganese ion loading, which correlated well with the Short and Steward procedure using X-ray diffraction analysis. Annealing of all lower (<5 %) manganese ion-loaded samples transforms the cubic component into its hexagonal form. Systematic variation of manganese ion concentration in the range of 0–5 % helps tune in a new combination of photoluminescence bands, composed of a band edge, surface and manganese d–d emissions. The manganese ions located inside the CdS matrix studied by electron paramagnetic resonance (EPR) reveal progressively changing presence of (i) distorted tetrahedral nature of isolated Mn2+ and (ii) cluster formation through dipolar and/or exchange coupling arising from Mn2+–Mn2+ interaction. There is a neat correlation between PL and EPR properties on the one hand and between EPR and magnetism on the other. Most important part of this investigation lies in manganese coupled ferromagnetism (FM) as compared to our earlier reported anti-FM-coupled superparamagnetism, the difference originating from the use of different ligands. Pre-annealed (as synthesized) and post-annealed CdS/Mn2+ nanocrystals exhibit FM of manganese origin, the latter exhibiting increased FM due to annealing promoted migration of manganese ions to form more clusters, as confirmed by magnetization experiments. Electron microscopy reveals the formation of nanorods and nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amalnerkar DP, Pavaskar NR, Date SK, Sinha APB (1985) Structural investigations of cubic yields hexagonal phase transformation in thick films of photoconducting CdS. Indian J Pure Appl Phys 23:539–547

    CAS  Google Scholar 

  • Archer PI, Santangelo SA, Gamelin DR (2007) Inorganic cluster syntheses of TM2+-doped quantum dots (CdSe, CdS, CdSe/CdS): physical property dependence on dopant locale. J Am Chem Soc 129:9808–9818

    Article  CAS  Google Scholar 

  • Asokan S, Krueger KM, Colvin VL, Wong MS (2007) Shape-controlled synthesis of CdSe tetrapods using cationic surfactant ligands. Small 3:1164–1169

    Article  CAS  Google Scholar 

  • Bhattacharjee B, Ganguli D, Chaudhuri S (2002) Luminescent CdS nanoparticles embedded in polyethylene glycol (PEG 300) matrix thin film. J Nanopart Res 4:225–230

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Estrin Y, Rich DH, Zitoun D, Koltypin Y, Gedanken A (2010) Luminescent and ferromagnetic CdS:Mn2+/C core–shell nanocrystals. J Phys Chem C 114:22002–22011

    Article  CAS  Google Scholar 

  • Biswas S, Kar S, Chaudhuri S (2005) Optical and magnetic properties of manganese-incorporated zinc sulfide nanorods synthesized by a solvothermal process. J Phys Chem B 109:17526–17530

    Article  CAS  Google Scholar 

  • Chae WS, Ko JH, Hwang IW, Kim YR (2002) Emission characteristics of CdS nanoparticles induced by confinement within MCM-41 nanotubes. Chem Phys Lett 365:49–56

    Article  CAS  Google Scholar 

  • Chestnoy N, Harris TD, Hull R, Brus LE (1986) Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state. J Phys Chem 90:3393–3399

    Article  CAS  Google Scholar 

  • Chory CB, Remenyi C, Dem C, Schmitt M, Kiefer W, Gould C, Ruster C, Schmidt G, Hofmann DM, Pfisterer D, Muller G (2003) Synthesis and characterization of manganese-doped CdS nanoparticles. Phys Chem Chem Phys 5:1639–1643

    Article  Google Scholar 

  • Christian P, O’Brien P (2005) A new route to nanorods of cadmium sulfide. Chem Commun 2817–2819

  • Chu DZ, Jiang YP, Ren D (2007) Tuning the crystal structure and magnetic properties of Fe doped In2O3 nanocrystals. Appl Phys Lett 91:262503

    Article  Google Scholar 

  • Counio G, Esnouf S, Gacoin T, Boilot JP (1996) CdS:Mn nanocrystals in transparent xerogel matrices: synthesis and luminescence properties. J Phys Chem 100:20021–20026

    Article  CAS  Google Scholar 

  • Counio G, Gacoin T, Boilot JP (1998) Synthesis and photoluminescence of Cd1-x Mn x S (x ≤ 5) nanocrystals. J Phys Chem B 102:5257–5260

    Article  CAS  Google Scholar 

  • Delikanli S, He S, Qin Y, Zhang P, Zeng H, Zhang H, Swihart M (2008) Room temperature ferromagnetism in Mn-doped CdS nanorods. Appl Phys Lett 93:132501

    Article  Google Scholar 

  • Du YP, Zhang YW, Sun LD, Yan CH (2009) Self-assembled ferromagnetic monodisperse manganese oxide nanoplates synthesized by a modified nonhydrolytic approach. J Phys Chem C 113:6521–6528

    Article  CAS  Google Scholar 

  • Erwin SC, Zu L, Haftel MI, Efros AL, Kennedy TA, Norris DJ (2005) Doping semiconductor nanocrystals. Nature 436:91–94

    Article  CAS  Google Scholar 

  • Farvid SS, Dave N, Wang T, Radovanovic PV (2009) Dopant-induced manipulation of the growth and structural metastability of colloidal indium oxide nanocrystals. J Phys Chem C 113:15928–15933

    Article  CAS  Google Scholar 

  • Feltin N, Levy L, Ingert D, Vincent E, Pileni MP (2000) Unusual static and dynamic magnetic properties of Cd1−yMnyS nanocrystals. J Appl Phys 87:1415–1423

    Article  CAS  Google Scholar 

  • Fu SL, Houng MP, Wu TS (1985) Physical properties and flux effect of printed CdS thick films. Mat Res Bull 20:967–977

    Article  CAS  Google Scholar 

  • Kim JU, Cha SH, Shin K, Jho JY, Lee JC (2004) Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions. Adv Mater 16:459–464

    Article  CAS  Google Scholar 

  • Kim DH, Lee DJ, Kim NM, Lee SJ, Kanga TW, Woo YD, Fu DJ (2007) Ferroelectric and magnetic properties of CdMnS films prepared by coevaporation. J Appl Phys 101:094111

    Article  Google Scholar 

  • Lei Y, Chim WK, Sun HP, Wilde G (2005) Highly ordered CdS nanoparticle arrays on silicon substrates and photoluminescence properties. Appl Phys Lett 86:103106

    Article  Google Scholar 

  • Levy L, Hochepied JF, Pileni MP (1996) Control of the size and composition of three dimensionally diluted magnetic semiconductor clusters. J Phys Chem 100:18322–18326

    Article  CAS  Google Scholar 

  • Ma G, Tang SH, Sun W, Shen Z, Huang W, Shi J (2002) Size-dependent excited state properties of CdS nanocrystals. Phys Lett A 299:581–585

    Article  CAS  Google Scholar 

  • Madhu C, Sundaresan A, Rao CNR (2008) Room-temperature ferromagnetism in undoped GaN and CdS semiconductor nanoparticles. Phys Rev B 77:201306(R)

    Article  Google Scholar 

  • Magana D, Perera SC, Harter AG, Dalal NS, Strouse GF (2006) Switching-on superparamagnetism in Mn/CdSe quantum dots. J Am Chem Soc 128:2931–2939

    Article  CAS  Google Scholar 

  • Mahler B, Lequeux N, Dubertret B (2010) Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals. J Am Chem Soc 132:953–959

    Article  CAS  Google Scholar 

  • Mandal P, Talwar SS, Srinivasa RS, Major SS (2009) Strong blue excitonic emission from CdS nanocrystallites prepared by LB technique. Appl Phys A 94:577–584

    Article  CAS  Google Scholar 

  • Marandi M, Taghavinia N, Sedaghat Z, Iraji zad A, Mahdavi SM (2008) Thermochemical growth of Mn-doped CdS nanoparticles and study of luminescence evolution. Naotechnology 19:225705

    Article  CAS  Google Scholar 

  • Martin CR (1994) Nanomaterials—a membrane-based synthetic approach. Science 266:1961–1966

    Article  CAS  Google Scholar 

  • Matsumoto K, Takagi K, Kaneko S (1983) Kinetics of the cubic → hexagonal transformation of cadmium sulfide. J Electrochem Soc 130:423–426

    Article  CAS  Google Scholar 

  • Murase N, Jagannathan R, Kanematsu Y, Watanabe M, Kurita A, Hirata K, Yazawa T, Kushida T (1999) Fluorescence and EPR characteristics of Mn2+-doped ZnS nanocrystals prepared by aqueous colloidal method. J Phys Chem B 103:754–760

    Article  CAS  Google Scholar 

  • Nag A, Sapra S, Gupta S, Prakash A, Ghangrekar A, Periasamy N, Sarma DD (2008) Luminescence in Mn-doped CdS nanocrystals. Bull Mater Sci 31:561–568

    Article  CAS  Google Scholar 

  • Norberg NS, Kittilstved KR, Amonette JE, Kukkadapu RK, Schwartz DA, Gamelin DR (2004) Synthesis of colloidal Mn2+:ZnO quantum dots and high-T C ferromagnetic nanocrystalline thin films. J Am Chem Soc 126:9387–9398

    Article  CAS  Google Scholar 

  • Orii T, Kaito S, Matsuishi K, Onari S, Arai T (2002) Photoluminescence of CdS nanoparticles suspended in vacuum and its temperature increase by laser irradiation. J Phys: Condens Matter 14:9743–9752

    Article  CAS  Google Scholar 

  • Patil LA, Wani PA, Amalnerkar DP (1999) Cucl2 assisted cubic to hexagonal phase transformation of cadmium sulphide. Mater Chem Phys 61:260–265

    Article  CAS  Google Scholar 

  • Peng Z, Peng X (2002) Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc 124:3343–3353

    Article  CAS  Google Scholar 

  • Sambandam B, Manoharan PT (2009) Davydov split PL emission and EPR correlation in β-MnS layered CdS nanorods. J Phys Chem C 113:9486–9496

    Article  CAS  Google Scholar 

  • Sambandam B, Rajendran N, Kanagaraj M, Arumugam S, Manoharan PT (2011) Switching on antiferromagnetism coupled superparamagnetism by annealing ferromagnetic Mn/CdS nanoparticles. J Phys Chem C 115:11413–11419

    Article  CAS  Google Scholar 

  • Short MA, Steward EG (1959) Measurement of disorder in zinc and cadmium sulfides. Am Mineral 44:189–193

    CAS  Google Scholar 

  • Spanhel L, Haase M, Weller H, Henglein A (1987) Photochemistry of colloidal semiconductors. 20. surface modification and stability of strong luminescing CdS particles. J Am Chem Soc 109:5649–5655

    Article  CAS  Google Scholar 

  • Sreeprasad TS, Samal AK, Pradeep T (2008) Reactivity and resizing of gold nanorods in presence of Cu2+. Bull Mater Sci 31:219–224

    Article  CAS  Google Scholar 

  • Thangadurai P, Balaji S, Manoharan PT (2008) Surface modification of CdS quantum dots using thiols. Nanotechnology 19:435708

    Article  CAS  Google Scholar 

  • Vogel W, Urban J, Kundu M, Kulkarni SK (1997) Sphalerite-wurtzite intermediates in nanocrystalline CdS. Langmuir 13:827–832

    Article  CAS  Google Scholar 

  • Vossmeyer T, Katsikas L, Gienig M, Popovic IG, Diesner K, Chemseddine A, Eychmiiller A, Weller H (1994) CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J Phys Chem 98:7665–7673

    Article  CAS  Google Scholar 

  • Wang Q, Xu Z, Yue L, Chen W (2004) Characteristics and optical properties of Cd1−x Mn x S nanorods prepared through hydrothermal route. Opt Mater 27:453–458

    Article  CAS  Google Scholar 

  • Xiao Q, Xiao C (2009) Surface-defect-states photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method. Appl Surf Sci 255:7111–7114

    Article  CAS  Google Scholar 

  • Yang J, Zeng JH, Yu SH, Yang L, Zhou GE, Qian YT (2000) Formation process of CdS nanorods via solvothermal route. Chem Mater 12:3259–3263

    Article  CAS  Google Scholar 

  • Yu SH, Wu YS, Yang J, Han ZH, Xie Y, Qian YT, Liu XM (1998) A novel solventothermal synthetic route to nanocrystalline CdE (E = S, Se, Te) and morphological control. Chem Mater 10:2309–2312

    Article  CAS  Google Scholar 

  • Zhang H, Banfield JF (1998) Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem 8:2073–2076

    Article  CAS  Google Scholar 

  • Zhang J, Sun L, Liao C, Yan C (2002) Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method. Solid State Commun 124:45–48

    Article  CAS  Google Scholar 

  • Zhao PQ, Fan JY, Xue HT (2009) The influence of the shell on magnetic properties of CdS:Mn/SiO2 composite nanoparticles. Appl Phys A 97:277–280

    Article  CAS  Google Scholar 

  • Zhou H, Hofmann DM, Alves HR, Meyer BK (2006) Correlation of Mn local structure and photoluminescence from CdS:Mn nanoparticles. J Appl Phys 99:103502

    Article  Google Scholar 

  • Zou Y, Li D, Yang D (2011) Shape and phase control of CdS nanocrystals using cationic surfactant in non-injection synthesis. Nanoscale Res Lett 6:374

    Article  Google Scholar 

Download references

Acknowledgments

PTM acknowledges the DST, Government of India for a research scheme (SR/S1/RFIC-02/2006) and for the Ramanna Fellowship and Indian National Science Academy for the senior scientistship. He also thanks the IGNOU, Delhi for having offered the Sir C.V. Raman Chair Professorship. Balaji thanks the CSIR for his Senior Research Fellowship. We thank Professor J. Subramanian of CLRI and Dr. J. M. Rifkind and Dr. Maria Selagado of NIA/NIH, Baltimore for help in low temperature EPR measurement. SA wishes to acknowledge DST and UGC, New Delhi for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Periakaruppan T. Manoharan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2012_1067_MOESM1_ESM.doc

Supplementary data file contains: Powder XRD deconvolution for 0.1, 0.5, 1, and 5 % Mn/CdS nanocrystals in the 2θ range of 30°–40°, XRD deconvolution of 5 % Mn/CdS in the 2θ range of 20°–35°, DSC and XRD comparison table, EPR at 300 K for pre-annealed samples, EPR- after bleaching. (DOC 1036 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sambandam, B., Michael, R.J.V., Rajendran, N. et al. Manganous ion dictated morphology change and ferromagnetism in CdS nanocrystals. J Nanopart Res 14, 1067 (2012). https://doi.org/10.1007/s11051-012-1067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1067-2

Keywords

Navigation