Skip to main content
Log in

Synthesis of nanoparticles in an atmospheric pressure glow discharge

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanopowders are produced in a low temperature, non-equilibrium plasma jet (APPJ), which produces a glow discharge at atmospheric pressure, for the first time. Amorphous carbon and iron nanoparticles have been synthesized from Acetylene and Ferrocene/H2, respectively. High generation rates are achieved from the glow discharge at near-ambient temperature (40–80°C), and rise with increasing plasma power and precursor concentration. Fairly narrow particle size distributions are measured with a differential mobility analyzer (DMA) and an aerosol electrometer (AEM), and are centered around 30–35 nm for carbon and 20–25 nm for iron. Particle characteristics analyzed by TEM and EDX reveal amorphous carbon and iron nanoparticles. The Fe particles are highly oxidized on exposure to air. Comparison of the mobility and micrograph diameters reveal that the particles are hardly agglomerated or unagglomerated. This is ascribed to the unipolar charge on particles in the plasma. The generated particle distributions are examined as a function of process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartz H., Fissan H., Helsper C., Kousaka Y., Okuyama K., Fukushima N., Keady P.B., Kerrigan Bauer M. and von Keudell A. (2004). Plasma Sources Science and Technology 13: 285–92

    Article  Google Scholar 

  • Benedikt J., Wisse M., Woen R.V., Engeln R. and Sanden M.C.M.v.d. (2003). Journal of Applied Physics 94: 6932–8

    Article  CAS  Google Scholar 

  • Cui C. and Goree J. (1994). Plasma Science, IEEE Transactions on 22:151–8

    Article  Google Scholar 

  • Fernández de la Mora J., de Juan L., Liedtke K., Schmidt-Ott A. (2003). J. Aerosol Sci. 34: 79

    Article  Google Scholar 

  • Hicks R.F., Babayan S.E., Jeong J.Y., Tu V.J., Park J., Selwyn G.S. (1998). Plasma Sources Sci. Technol. 7: 286–8

    Article  Google Scholar 

  • Hollenstein C. (2000). Plasma Physics and Controlled Fusion 42: R93–R104

    Article  CAS  Google Scholar 

  • Jeong J.Y., Babayan S.E., Tu V.J., Park J., Henins I., Hicks R.F., and Selwyn G.S. (1998). Plasma Sources Sci. Technol. 7: 282–5

    Article  CAS  Google Scholar 

  • Kruis F.E., Fissan H., Peled A. (1998). Journal of Aerosol Science 29: 511–35

    Article  CAS  Google Scholar 

  • Li X., Chiba A., Sato M., Takahashi S. (2003). Acta Materialia.51: 5593–600

    Article  CAS  Google Scholar 

  • Mitu B., Vizireanu S., Petcu C., Dinescu G., Dinescu M., Birjega R., Teodorescu V.S. (2004). Surface and Coatings Technology 180–181: 238–43

    Article  Google Scholar 

  • Nowling G.R., Babayan S.E., Jankovic V. and Hicks R.F. (2002). Plasma Sources Science and Technology 11: 97–103

    Article  CAS  Google Scholar 

  • Pocsik I., Veres M., Fule M., Koos M., Kokavecz J., Toth Z., Radnoczi G. (2002). Vacuum Surface Engineering, Surface Instrumentation & Vacuum Technology 71: 171–6

    Google Scholar 

  • Sakka Y., Okuyama H., Uchikoshi T., and Ohno S. (2002). Journal of Alloys and Compounds 346: 285–91

    Article  CAS  Google Scholar 

  • Schrick B., Hydutsky B.W., Blough J.L., and Mallouk T.E. (2004). Chem. Mater. 16: 2187–93

    Article  CAS  Google Scholar 

  • Schütze A., Jeong J.Y., Babayan S.E., Park J., Selwyn G.S., Hicks R.F. (1998). IEEE Transactions on Plasma Science 26:1685–94

    Article  Google Scholar 

  • Smirnov B.M.(2001). Physics of Ionized Gases. Wiley-Interscience, New York

    Google Scholar 

  • Shao H., Liu T., Li X., Zhang L. (2003). Scripta Materialia 49: 595–9

    Article  CAS  Google Scholar 

  • Suda Y., Ono T., Akazawa M., Sakai Y., Tsujino J., Homma N. (2002). Thin Solid Films 415: 15–20

    Article  CAS  Google Scholar 

  • Vollath, D., Vinga Szabó, D., in Innovative Processing of Films and Nanocrystalline Powders, ed. K.-L. Choy, Imperial College Press, London, 2002

  • Hinds W.C.(1999). Aerosol Technology. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. P. J. Kooyman for preparing all the TEM micrographs presented in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schmidt-Ott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barankin, M., Creyghton, Y. & Schmidt-Ott, A. Synthesis of nanoparticles in an atmospheric pressure glow discharge. J Nanopart Res 8, 511–517 (2006). https://doi.org/10.1007/s11051-005-9013-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-9013-1

Key words:

Navigation