Skip to main content
Log in

HFE mutations and transferrin C1/C2 polymorphism among Croatian patients with schizophrenia and schizoaffective disorder

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the possible influence of hemochromatosis gene mutations (HFE-C282Y and H63D) and transferrin gene C2 variant (TF-C2) on susceptibility to schizophrenia and schizoaffective disorder and/or age at first hospital admission. Genotyping was performed in 176 Croatian patients and 171 non-psychiatric Croatian controls using PCR-RFLP analyses. Regarding the H63D mutation, allele and genotype frequencies reached boundary statistical significance. Other allele and genotype distributions were not significantly different between two groups. We also analyzed age at first hospital admission as a continuous variable using the non-parametric Mann–Whitney U-test and Kruskal–Wallis test, and multiple regression analysis. The results of these tests were negative. We concluded that investigated HFE mutations and TF-C2 variant are not high-risk genetic variants for schizophrenia/schizoaffective disorder in our population. Also our data do not support their impact on age at onset of the first psychotic symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muñoz M, García-Erce JA, Remacha AF (2011) Disorders of iron metabolism. Part 1: molecular basis of iron homeostasis. J Clin Pathol 64:287–296

    Article  PubMed  Google Scholar 

  2. Wallander ML, Leibold EA, Eisenstein RS (2006) Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochim Biophys Acta 1763:668–689

    Article  PubMed  CAS  Google Scholar 

  3. Goswami T, Andrews NC (2006) Hereditry hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J Biol Chem 281:28494–28498

    Article  PubMed  CAS  Google Scholar 

  4. Weinzimer SA, Beers Gibson T, Collett-Solberg PF, Khare A, Liu B, Cohen P (2001) Transferrin is an insulin-like growth factor-binding protein-3 binding protein. J Clin Endocrinol Metab 86:1806–1813

    Article  PubMed  CAS  Google Scholar 

  5. Levy JE, Jin O, Fujiwara Y, Kuo F, Andrews N (1999) Transferrin receptor is necesarry for development of erythrocytes and the nervous system. Nat Genet 21:396–399

    Article  PubMed  CAS  Google Scholar 

  6. Wang SM, Fu LJ, Duan XL, Crooks DR, Yu P, Qian ZM, Di XJ, Li J, Rouault TA, Chang YZ (2010) Role of hepcidin in murine brain iron metabolism. Cell Mol Life Sci 67:123–133

    Article  PubMed  CAS  Google Scholar 

  7. Rouault TA, Cooperman S (2006) Brain iron metabolism. Semin Pediatr Neurol 13:142–148

    Article  PubMed  Google Scholar 

  8. Moos T, Rosengreen Nielsen T, Skjørringe T, Morgan EH (2007) Iron trafficing inside the brain. J Neurochem 103:1730–1740

    Article  PubMed  CAS  Google Scholar 

  9. Rouault TA, Zhang DL, Jeong SY (2009) Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins. Metab Brain Dis 24:673–684

    Article  PubMed  CAS  Google Scholar 

  10. Insel BJ, Schaefer CA, McKeague IV, Susser ES, Brown AS (2008) Maternal iron deficiency and the risk of schizophrenia in offspring. Arch Gen Psychiatry 65:1136–1144

    Article  PubMed  Google Scholar 

  11. Sørensen HJ, Nielsen PR, Pedersen CB, Mortensen PB (2010) Association between prepartum maternal iron deficiency and offspring risk of schizophrenia: population-based cohort study with linkage of Danish national registers. Schizophr Bull [Epub ahead of print]

  12. Beard J (2003) Iron deficiency alters brain development and functioning. J Nutr 133:1468S–1472S

    PubMed  CAS  Google Scholar 

  13. Georgieff MK, Innis SM (2005) Controversial nutrients that potentially affect preterm neurodevelopment: essential fatty acids and iron. Pediatr Res 57:99R–103R

    Article  PubMed  Google Scholar 

  14. Georgieff MK (2008) The role of iron in neurodevelopment: fetal iron deficiency and the developing hippocampus. Biochem Soc Trans 36:1267–1271

    Article  PubMed  CAS  Google Scholar 

  15. Innis S (2007) Dietary (n-3) fatty acids and brain development. J Nutr 137:855–859

    PubMed  CAS  Google Scholar 

  16. Rioux FM, Lindmark G, Hernell O (2006) Does inadequate maternal iron or DHA status have a negative impact on an infant’s functional outcomes? Acta Pediatr 95:137–144

    Article  Google Scholar 

  17. Connor JR, Pavlick G, Karli D, Menzies SL, Palmer C (1995) A histochemical study of iron-positive cells in the developing rat brain. J Comp Neurol 355:111–123

    Article  PubMed  CAS  Google Scholar 

  18. Lozoff B, Georgieff MK (2006) Iron deficiency and brain development. Semin Pediatr Neurol 13:158–165

    Article  PubMed  Google Scholar 

  19. Aguilar-Valles A, Flores C, Luheshi GN (2010) Prenatal inflammation-induced hypoferremia alters dopamine function in the adult offspring in rat: relevance for schizophrenia. PloS One 5:e10967

    Article  PubMed  Google Scholar 

  20. McCann JC, Ames BN (2007) An overview of evidence for a causal relation between iron deficiency during development and deficits in cognitive or behavioral function. Am J Clin Nutr 85:931–945

    PubMed  CAS  Google Scholar 

  21. Georgieff MK (2007) Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr 85:614S–620S

    PubMed  CAS  Google Scholar 

  22. Takeda A (2001) Significance of transferrin to iron delivery to the brain. J Health Sci 47:520–524

    Article  CAS  Google Scholar 

  23. Wong CT, Saha N (1986) Effects of transferrin genetic phenotypes on total iron-binding capacity. Acta Haematol 75:215–218

    Article  PubMed  CAS  Google Scholar 

  24. Robson KJ, Lehmann DJ, Wimhurst VL, Livesey KJ, Combrinck M, Merryweather-Clarke AT, Warden DR, Smith AD (2004) Synergy between the C2 allele of transferrin and the C282Y allele of the haemochromatosis gene (HFE) as risk factors for developing Alzheimer’s disease. J Med Genet 41:261–265

    Article  PubMed  CAS  Google Scholar 

  25. Berlin D, Chong G, Chertkow H, Bergman H, Phillips NA, Schipper HM (2004) Evaluation of HFE (hemochromatosis) mutations as genetic modifiers in sporadic AD and MCI. Neurobiol Aging 25:465–474

    Article  PubMed  CAS  Google Scholar 

  26. Blázquez L, De Juan D, Ruiz-Martínez J, Emparanza JI, Sáenz A, Otaegui D, Sistiaga A, Martínez-Lage P, Lamet I, Samaranch L, Buiza C, Etxerberria I, Arriola E, Cuadrado E, Urdaneta E, Yanguas J, López de Munain A (2007) Genes related to iron metabolism and susceptibility to Alzheimer’s disease in Basque population. Neurobiol Aging 28:1941–1943

    Article  PubMed  Google Scholar 

  27. Lehmann DJ, Worwood M, Ellis R, Wimhurst VL, Merryweather-Clarke AT, Warden DR, Smith AD, Robson KJ (2006) Iron genes, iron load and risk of Alzheimer’s disease. J Med Genet 43:e52

    Article  PubMed  CAS  Google Scholar 

  28. Namekata K, Imagawa M, Terashi A, Ohta S, Oyama F, Ihara Y (1997) Association of transferrin C2 allele with late-onset Alzheimer’s disease. Hum Genet 101:126–129

    Article  PubMed  CAS  Google Scholar 

  29. Ramagopalan SV, Cukjati M, Cernilec M, DeLuca GC, Dyment DA, Degenhardt A, Sadovnick AD, Serbec VC, Ebers GC, Duquette P (2008) Mutations in the hemochromatosis gene and the clinical outcome of multiple sclerosis. J Neuroimmunol 203:104–107

    Article  PubMed  CAS  Google Scholar 

  30. Ristić S, Lovrečič L, Brajenović-Milić B, Starčević-Čizmarević N, Jazbec SS, Sepčić J, Kapović M, Peterlin B (2005) Mutations in the hemochromatosis gene (HFE) and multiple sclerosis. Neurosci Lett 383:301–304

    Article  PubMed  Google Scholar 

  31. First MB, Spitzer RL, Gibbon M, Williams JBW (2002) Structured clinical interview for DSM-IV-TR Axis I disorders, research version, non-patient edition. (SCID-I/NP) New York: Biometrics Research, New York State Psychiatric Institute

  32. Nadalin S, Rubeša G, Giacometti J, Vulin M, Tomljanović D, Vraneković J, Kapović M, Buretić-Tomljanović A (2008) BanI polymorphism of cytosolic phospholipase A2 gene is associated with age at onset in male patients with schizophrenia and schizoaffective disorder. Prostaglandins Leukot Essent Fatty Acids 78:351–360

    Article  PubMed  CAS  Google Scholar 

  33. Merryweather-Clarke AT, Pointon JJ, Shearman JD, Robson KJ (1997) Global prevalence of putative haemochromatosis mutations. J Med Genet 34:275–278

    Article  PubMed  CAS  Google Scholar 

  34. Namekata K, Oyama F, Imagawa M, Ihara Y (1997) Human transferrin (Tf): a single mutation at codon 570 determines Tf C1 or C2 variant. Hum Genet 100:457–458

    Article  PubMed  CAS  Google Scholar 

  35. Ristić S, Makuc J, Starčević N, Logar N, Brajenović-Milić B, Stepec S, Pleša I, Kapović M, Milić S, Štimac D, Crnić-Martinović M, Peterlin B (2003) Hemochromatosis gene mutations in the Croatian and Slovenian populations. Clin Genet 64:444–446

    Article  PubMed  Google Scholar 

  36. Buretić-Tomljanović A, Vlastelić I, Radojčić Badovinac A, Starčević-Čizmarević N, Nadalin S, Ristić S (2009) The impact of hemochromatosis mutations and transferrin genotype on gonadotropin serum levels in infertile men. Fertil Steril 91:1793–1800

    Article  PubMed  Google Scholar 

  37. Gunel-Ozcan A, Murad Basar M, Kisa U, Ankarah HC (2009) Hereditary hemochromatosis gene (HFE) H63D mutation shows an association with abnormal sperm motility. Mol Biol Rep 36:1709–1714

    Article  PubMed  CAS  Google Scholar 

  38. Hare E, Glahn DC, Dassori A, Raventos H, Nicolini H, Ontiveros A, Medina R, Mendoza R, Jerez A, Munoz R, Almasy L, Escamilla MA (2010) Heritability of age of onset of psychosis in schizophrenia. Am J Med Genet B 153B:298–302

    Google Scholar 

  39. Rasmussen HB, Timm S, Wang AG, Søeby K, Lublin H, Fenger M, Hemmingsen R, Werge T (2006) Association between the CCR5 32-bp deletion allele and late onset of schizophrenia. Am J Psychiatry 163:507–511

    Article  PubMed  Google Scholar 

  40. Kampman O, Anttila S, Illi A, Mattila KM, Rontu R, Leinonen E, Lehtimäki T (2004) Apolipoprotein E polymorphism is associated with age of onset in schizophrenia. J Hum Genet 49:355–359

    Article  PubMed  CAS  Google Scholar 

  41. Lee KY, Ahn YM, Joo E, Joo YH, Chang JS, Yoo HY, Kim YS (2006) Partial evidence of an association between epidermal growth factor A61G polymorphism and age at onset in male schizophrenia. Neurosci Res 56:356–362

    Article  PubMed  CAS  Google Scholar 

  42. Numata S, Ueno S, Iga J, Yamauchi K, Hongwei S, Ohta K, Kinouchi S, Shibuya-Tayoshi S, Tayoshi S, Aono M, Kameoka N, Sumitani S, Tomotake M, Kaneda Y, Taniguchi T, Ishimoto Y, Ohmori T (2006) Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism in schizophrenia is associated with age at onset and symptoms. Neurosci Lett 401:1–5

    Article  PubMed  CAS  Google Scholar 

  43. Zhang XY, Haile CN, Tan YL, Zuo LJ, Yang BZ, Cao LY, Zhou DF (2005) Tumor necrosis factor α polymorphism (−1031T/C) is associated with age of onset of schizophrenia. Mol Psychiatry 10:897–899

    Article  PubMed  CAS  Google Scholar 

  44. De Marco F, Liguori R, Giardina MG, D’Armiento M, Angelucci E, Lucariello A, Morante R, Cimino L, Galeota-Lanza A, Tarantino G, Ascione A, Budillon G, Vecchione R, Martinelli R, Matarazzo M, De Simone V (2004) High prevalence of non-HFE gene-associated haemochromatosis in patients from southern Italy. Clin Chem Lab Med 42:17–24

    Article  PubMed  Google Scholar 

  45. Lee PL, Barton JC (2006) Hemochromatosis and severe iron overload associated with compound heterozygosity for TFR2 R455Q and two novel mutations TFR2 R396X and G792R. Acta Hematol 115:102–105

    Article  Google Scholar 

  46. Rochette J, Pointon JJ, Fisher CA, Perera G, Arambepola M, Arichchi DS, De Silva S, Vandwalle JL, Monti JP, Old JM, Merryweather-Clarke AT, Weatherall DJ, Robson KJ (1999) Multicentric origin of hemochromatosis gene (HFE) mutations. Am J Hum Genet 64:1056–1062

    Article  PubMed  CAS  Google Scholar 

  47. McGrath JJ, Burne TH, Féron F, Mackay-Sim A, Eyles DW (2010) Developmental vitamin D deficiency and risk of schizophrenia: a 10 year update. Schizophr Bull 36:1073–1078

    Article  PubMed  Google Scholar 

  48. McGrath J, Brown A, St Clair D (2011) Prevention and schizophrenia—the role of dietary factors. Schizophr Bull 37:272–283

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all anonymous reviewers for their critical and helpful comments. This research was supported by Grant No. 062-0982522-0369 from the Ministry of Science, Education, and Sports, Zagreb, Croatia. The Ministry had no further role in the study design; collection, analysis, or interpretation of data; or the decision to submit this paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena Buretić-Tomljanović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buretić-Tomljanović, A., Vraneković, J., Rubeša, G. et al. HFE mutations and transferrin C1/C2 polymorphism among Croatian patients with schizophrenia and schizoaffective disorder. Mol Biol Rep 39, 2253–2258 (2012). https://doi.org/10.1007/s11033-011-0974-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0974-0

Keywords

Navigation