Skip to main content
Log in

The effect of introduction of carbon nanotubes on the physicomechanical properties of polyvinylacetate

  • Published:
Mechanics of Composite Materials Aims and scope

The physicomechanical properties of polyvinylacetate (PVA) with small, no more than 2 wt.%, additions of carbon nanotubes (CNTs) are investigated. Data on the influence of CNT concentration on the differential scanning calorimetry thermograms, thermal destruction, electrical resistance, water vapor sorption, as well as indices of the mechanical properties of PVA/CNT (yield stress, strength, elastic modulus, ultimate elongation, and short-term creep) are reported. A variant of calculation of the elastic constants of the nanocomposite is considered with account of the effect of nanotube agglomeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 56-58 (1991).

    Article  CAS  ADS  Google Scholar 

  2. M. A. Lopez Manchado, L. Valentini, J. Biagiotti, and J. M. Kenny, “Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing,” Carbon, 43, 1499-1505 (2005).

    Article  Google Scholar 

  3. A. A. Koval’chuk, A. N. Shchegolikhin, V. G. Shevchenko, P. M. Nedorezova, A. N. Klyamkina, and A. M. Aladyshev, “Synthesis and properties of polypropylene/multiwall carbon nanotube composites,” Macromolecules, 41, 3149-3156 (2008).

    Article  ADS  Google Scholar 

  4. H. E. Miltner, N. Grossiord, K. Lu, J. Loos, C. E. Koning, and B. van Mele, “Isotactic polypropylene/carbon nanotube composites prepared by latex technology. Thermal analysis of carbon nanotube-induced nucleation,” Macromolecules, 41, 5753-5762 (2008).

    Article  CAS  ADS  Google Scholar 

  5. K. Lu, N. Grossiord, C. E. Koning, H. E. Miltner, B. van Mele, and J. Loos, “Carbon nanotube/isotactic polypropylene composites prepared by latex technology: morphology analysis of CNT-induced nucleation,” Macromolecules, 41, 8081-8085 (2008).

    Article  CAS  ADS  Google Scholar 

  6. D. T. G. Katerelos, R. Joffe, D. Labou, and L. Wallstrom, “Alteration of the mechanical behaviour of polypropylene owing to successive introduction of multiwall carbon nanotubes and stretching,” Mech. Compos. Mater., 45, No. 4, 423-434 (2009).

    Article  CAS  Google Scholar 

  7. J. M. Brown, D. P. Anderson, R. S. Justice, K. Lafdi, M. Befor, K. L. Strong, and D. W. Schaefer, “Hierarchical morphology of carbon single-walled nanotubes during sonication in an aliphatic diamine,” Polymer, 46, 10854-10865 (2005).

    Article  CAS  Google Scholar 

  8. B. Fiedler, F. H. Gojny, M. H. G. Wichmann, M. C. M. Nolte, and K. Schulte, “Fundamental aspects of nano-reinforced composites,” Compos. Sci. Technol., 66, 3115-3125 (2006).

    Article  CAS  Google Scholar 

  9. T. Liu, I. Y. Phang, L. Shen, S. Y. Chow, and W.-D. Zhang, “Morphology and mechanical properties of multi-walled carbon nanotubes reinforced nylon-6 composites,” Macromolecules, 37, 7214-7222 (2004).

    Article  CAS  ADS  Google Scholar 

  10. G. Broza, K. Piszczek, K. Schulte, and T. Sterzynski, “Nanocomposites of poly(vinyl chloride) with carbon nanotubes (CNT),” Compos. Sci. Technol., 67, 890-894 (2007).

    Article  CAS  Google Scholar 

  11. D. Qian and E. C. Dickey, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Appl. Phys. Lett., 76, No. 20, 2868-2870 (2000).

    Article  CAS  ADS  Google Scholar 

  12. F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, “Nanotube networks in polymer nanocomposites: rheology and electrical conductivity,” Macromolecules, 37, 9048-9055 (2004).

    Article  CAS  ADS  Google Scholar 

  13. O. Chauvet, J. M. Benoit, and B. Corraze, “Electrical, magneto-transport and localization of charge carriers in nanocomposites based on carbon nanotubes,” Carbon, 42, 949-952 (2004).

    Article  CAS  Google Scholar 

  14. M. S. P. Shaffer and A. H. Windle, “Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites,” Adv. Mater., 11, No. 11, 937-941 (1999).

    Article  CAS  Google Scholar 

  15. H. Koerner, W. Liu, M. Alexander, P. Mirau, H. Dowty, and R. A. Vaia, “Deformation-morphology correlations in electrically conductive carbon nanotube-thermoplastic polyurethane nanocomposites,” Polymer, 46, 4405-4420 (2005).

    Article  CAS  Google Scholar 

  16. R. Haggenmueller, C. Guthy, J. R. Lukes, J. E. Fischer, and K. I. Winey, “Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity,” Macromolecules, 40, 2417-2421 (2007).

    Article  CAS  ADS  Google Scholar 

  17. A. I. Burya, A. G. Tkachev, S. V. Mishchenko, and N. I. Nakonechnaya, “Polymer structural material modified with carbon nanotubes,” Plast. Massy, No. 12, 36-41 (2007).

  18. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, “Sorption of water in nylon6-clay hybrid,” J. Appl. Polym. Sci., 49, 1259-1264 (1993).

    Article  CAS  Google Scholar 

  19. Ph. B. Messersmith and E. P. Giannelis, “Synthesis and barrier properties of poly(-caprolactone)-layered silicate nanocomposites,” J. Polym. Sci., Pt. A: Polym. Chem., 33, 1047-1057 (1995).

    Article  CAS  ADS  Google Scholar 

  20. J.-K. Kim, Ch. Hu, R. S. C. Woo, and M.-L. Sham, “Moisture barrier characteristics of organoclay-epoxy nanocomposites,” Compos. Sci. Technol., 65, 805-813 (2005).

    Article  CAS  Google Scholar 

  21. R. D. Maksimov, S. Gaidukov, J. Zicans, and J. Jansons, “Moisture permeability of a polymer nanocomposite containing unmodified clay,” Mech. Compos. Mater., 44, No. 5, 505-514 (2008).

    Article  CAS  Google Scholar 

  22. T. Glaskova and A. Aniskevich, “Moisture absorption by epoxy/montmorillonite nanocomposite,” Compos. Sci. Technol., 69, 2711-2715 (2009).

    Article  CAS  Google Scholar 

  23. R. D. Maksimov, A. Lagzdins, N. Lilichenko, and E. Plume, “Mechanical properties and water vapor permeability of starch/montmorillonite nanocomposites,” Polym. Eng. Sci., 49, No. 12, 2421-2429 (2009).

    Article  CAS  Google Scholar 

  24. K. Wise and J. Hinkley, “Molecular dynamics simulations of nanotube-polymer composites,” in: Amer. Phys. Soc. Spring Meeting, Seattle, April 12-16 (2001).

  25. G. M. Odergard, T. S. Gates, K. E. Gates, C. Gates, and E. J. Siochi, “Constitutive modeling of nanotube-reinforced polymer composites,” Compos. Sci. Technol., 63, 1671-1687 (2003).

    Article  Google Scholar 

  26. W. Zhang, A. Joshi, Z. Wang, R. S. Kane, and N. Koratkar, “Creep mitigation in composites using carbon nanotube additives,” Nanotechnology, 18, 185703 (2007).

    Article  ADS  Google Scholar 

  27. W. D. Zhang, L. Shen, I. Y. Phang, and T. Liu, “Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compaunding,” Macromolecules, 37, 256-259 (2004).

    Article  CAS  ADS  Google Scholar 

  28. W. N. Findley, J. S. Lai, and K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials, Dover Publ. Inc., New York (1989).

    Google Scholar 

  29. R. D. Maksimov, E. Z. Plume, and J. O. Jansons, “Comparative studies on the mechanical properties of a thermoset polymer in tension and compression,” Mech. Compos. Mater., 41, No. 5, 425-436 (2005).

    Article  CAS  Google Scholar 

  30. J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. Roy. Soc. Ser. A, 241, 376-396 (1957).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metallurg., 21, No. 5, 571-574 (1973).

    Article  Google Scholar 

  32. E. Plume, R. D. Maksimov, and A. Lagzdins, “Effect of anisometry of a platelike nanofiller on the elastic constants of a transversely isotropic composite,” Mech. Compos. Mater., 44, No. 4, 341-348 (2008).

    Article  CAS  Google Scholar 

  33. A. Lagzdins, R. D. Maksimov, and E. Plume, “Anisotropy of elasticity of a composite with irregularly oriented anisometric filler particles,” Mech. Compos. Mater., 45, No. 4, 345-358 (2009).

    Article  Google Scholar 

  34. D. M. Schaefer and R. S. Justice, “How nano are nanocomposites?” Macromolecules, 40, 8501-8517 (2007).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Maksimov.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 46, No. 3, pp. 345-362, May-June, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimov, R.D., Bitenieks, J., Plume, E. et al. The effect of introduction of carbon nanotubes on the physicomechanical properties of polyvinylacetate. Mech Compos Mater 46, 237–250 (2010). https://doi.org/10.1007/s11029-010-9142-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-010-9142-1

Keywords

Navigation