Skip to main content
Log in

Thermal behaviour of the NaYF4:Yb3+,R3+ materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The NaYF4:Yb3+,R3+ (R: none, Pr, Nd, Sm, Eu, Tb or Dy) materials were prepared with selected dopant concentrations, using co-precipitation synthesis, to study the effect of the dopant and its concentration on the structure of these materials. The thermal behaviour of the as-prepared materials was studied with differential scanning calorimetry (DSC) and thermogravimetry. The structures prior to and after annealing were identified with X-ray powder diffraction. The materials were mainly hexagonal with occasional slight cubic impurity. The DSC curves revealed the cubic-to-hexagonal phase transition at 400–450 °C which temperature changes irregularly with the R3+ dopant and its concentration. The specific enthalpy of this transition varies also in a complicated way but may be correlated with the completeness of the transition. The hexagonal-to-cubic transition temperature (ca. 670 °C) is rather constant regardless of the R3+ dopant or its concentration. The temperatures and specific enthalpies of the phase transitions are useful when choosing the optimum dopant concentrations. It is also possible to estimate the structure prior to annealing with significant savings in use of resources. Only with Sm3+ and Dy3+ doping, no visible up-conversion luminescence was observed—in addition to the Er3+ and Tm3+ impurity emission. Eventually, it was found that the hexagonal form gives much stronger up-conversion luminescence and changes in the rare earth concentration allows the formation of this form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev. 2004;104:139–73.

    Article  CAS  Google Scholar 

  2. Antal T, Harju E, Pihlgren L, Lastusaari M, Tyystjärvi T, Hölsä J, Tyystjärvi E. Use of near-infrared radiation for oxygenic photosynthesis via photon up-conversion. Int J Hydrogen Energy. 2012;37:8859–63.

    Article  CAS  Google Scholar 

  3. de Wild J, Meijerink A, Rath JK, van Stark WGJHM, Schropp REI. Upconverter solar cells: materials and applications. Energy Environ Sci. 2011;4:4835–48.

    Article  Google Scholar 

  4. Ylihärsilä M, Valta T, Karp M, Hattara L, Harju E, Hölsä J, Saviranta P, Waris M, Soukka T. Oligonucleotide array-in-well platform for detection and genotyping human adenoviruses by utilizing upconverting phosphor label technology. Anal Chem. 2011;83:1456–61.

    Article  Google Scholar 

  5. Krämer KW, Biner D, Frei G, Güdel HU, Hehlen M, Lüthi S. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem Mater. 2004;16:1244–51.

    Article  Google Scholar 

  6. Zhao J, Sun Y, Kong X, Tian L, Wang Y, Tu L, Zhao J, Zhang H. Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+,Er3+ nanocrystals/submicroplates at low doping level. J Phys Chem B. 2008;112:15666–72.

    Article  CAS  Google Scholar 

  7. Hyppänen I, Hölsä J, Kankare J, Lastusaari M, Pihlgren L, Soukka T. Preparation and up-conversion luminescence properties of NaYF4:Yb3+,Er3+ nanomaterials. Terrae Rarae. 2009;16:1–6.

    Google Scholar 

  8. Harju E, Hyppänen I, Hölsä J, Kankare J, Lahtinen M, Lastusaari M, Pihlgren L, Soukka T. Polymorphism of NaYF4:Yb3+,Er3+ up-conversion luminescence materials. Z Kristallogr Proc. 2011;1:381–7.

  9. Thoma RE, Insley H, Hebert GM. Sodium fluoride–lanthanide trifluoride systems. Inorg Chem. 1966;5:1222–9.

  10. PCPDFWIN v. 1.30, Powder Diffraction File, 1997, International Centre for Diffraction Data, entries 06-0342 (cubic NaYF4) and 28-1192 (hexagonal Na(Y0.57Yb0.39Er0.04)F4).

  11. Mathews MD, Ambekar BR, Tyagi AK, Köhler J. J Alloys Compd. 2004;377:162–6.

  12. Malinowski M, Joubert M-F, Jacquier B. Infrared to blue up-conversion in Pr3+ doped YAG and LiYF crystals. J Lumin. 1994;60–61:179–82.

    Article  Google Scholar 

  13. Pollnau M, Hardman PJ, Clarkson WA, Hanna DC. Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4. Opt Commun. 1998;147:203–11.

  14. Zhou Y, Lin J, Wang S. Energy transfer and upconversion luminescence properties of Y2O3:Sm and Gd2O3:Sm phosphors. J Solid State Chem. 2003;171:391–5.

  15. Stręk W, Dereń PJ, Bednarkiewicz A, Kalisky Y, Boulanger P. Efficient up-conversion in KYb0.8Eu0.2(WO4)2 crystal. J Alloys Compd. 2000;300–301:180–3.

    Article  Google Scholar 

  16. Stręk W, Bednarkiewicz A, Dereń PJ. Power dependence of luminescence of Tb3+-doped KYb(WO4)2 crystal. J Lumin. 2001;92:229–35.

    Article  Google Scholar 

  17. Wermuth M, Riedener T, Güdel HU. Spectroscopy and upconversion mechanisms of CsCdBr3:Dy3+. Phys Rev B. 1998;57:4369–76.

    Article  CAS  Google Scholar 

  18. Müller P, Wermuth M, Güdel HU. Mechanisms of near-infrared to visible upconversion in CsCdBr3:Ho3+. Chem Phys Lett. 1998;290:105–11.

    Article  Google Scholar 

  19. Yi G, Lu H, Zhao S, Ge Y, Yang W, Chen D, Guo LH. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett. 2004;4:2191–6.

    Article  CAS  Google Scholar 

  20. Heer S, Kömpe K, Güdel HU, Haase M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide doped NaYF4 nanocrystals. Adv Mater. 2004;16:2102–5.

    Article  CAS  Google Scholar 

  21. Hölsä J, Laihinen T, Laamanen T, Lastusaari M, Pihlgren L, Rodrigues LCV, Soukka T. Enhancement of the up-conversion luminescence from NaYF4:Yb3+,Tb3+. Phys B. 2014;439:20–3.

  22. Geusic JE, Marcos HM, Van Uitert LG. Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl Phys Lett. 1964;4:182–4.

    Article  CAS  Google Scholar 

  23. Kaczmarek SM, Leniec G, Typek J, Boulon G, Bensalah A. Optical and EPR study of BaY2F8 single crystals doped with Yb. J Lumin. 2009;129:1568–74.

Download references

Acknowledgements

Financial support is acknowledged from the Nordic Energy Research (AquaFEED project), the Academy of Finland (projects Energy Storage Luminophors 2 and Novel Rare Earth Optical Sensors and Materials—a bilateral project of Academy of Finland and CNPq, Brazil), the Graduate School of Materials Research (GSMR), as well as the University of Turku Graduate School (UTUGS), Turku, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tero Laihinen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laihinen, T., Lastusaari, M., Pihlgren, L. et al. Thermal behaviour of the NaYF4:Yb3+,R3+ materials. J Therm Anal Calorim 121, 37–43 (2015). https://doi.org/10.1007/s10973-015-4609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4609-x

Keywords

Navigation