Skip to main content
Log in

Synthesis and thermal decomposition of Cr–urea complex

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, Cr–urea complex ([Cr(NH2CONH2)6](NO3)3) was synthesized by direct solid-state reaction of chromium nitrate and urea, and its thermal decomposition reaction was studied for the first time to explore the possibilities of using the complex as precursor to nanosized chromium oxide. The formation of [Cr(NH2CONH2)6](NO3)3 is confirmed from infrared spectroscopy and elemental analysis. Thermogravimetric and differential thermal analysis of the compound show a three-stage thermal decomposition in the temperature range from 190 to 430 °C. The result of X-ray diffraction (XRD) shows that the [Cr(NH2CONH2)6](NO3)3 decompose at ~300 °C into α-Cr2O3 nanopowder with an average crystallite size of 33 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Qiu Y, Gao L. Metal–urea complex—A precursor to metal nitrides. J Am Ceram Soc. 2004;87(3):352–7.

    Article  CAS  Google Scholar 

  2. Sardar K, Dan M, Schwenzera B, Rao CNR. A simple single-source precursor route to the nanostructures of AlN GaN and InN. J Mater Chem. 2005;15:2175–7.

    Article  CAS  Google Scholar 

  3. Zhang Z, Liu R, Qian Y. Synthesis of nanocrystalline chromium nitride from ammonolysis of chromium chloride. Mater Res Bull. 2002;37:1005–10.

    Article  CAS  Google Scholar 

  4. Ren R, Yang Z, Shaw LL. Synthesis of nanostructured chromium nitrides through mechanical activation process. Nanostruct Mater. 1999;11:25–35.

    Article  CAS  Google Scholar 

  5. Asuha S, Zhao S, Wu HY, Song L, Tegus O. One step synthesis of maghemite nanoparticles by direct thermal decomposition of Fe–urea complex and their properties. J Alloy Compd. 2009;472:L23–5.

    Article  CAS  Google Scholar 

  6. Asuha S, Suyala B, Siqintana X, Zhao S. Direct synthesis of Fe3O4 nanopowder by thermal decomposition of Fe–urea complex and its properties. J Alloy Compd. 2011;509:2870–3.

    Article  CAS  Google Scholar 

  7. Ravindran B, Madhurambal G, Mariappan M, Mojumdar SC. Synthesis and characterization of some single crystals of thiourea urea zinc chloride. J Therm Anal Calorim. 2011;104:893–9.

    Article  CAS  Google Scholar 

  8. Yurdakul H, Turan S, Ozel E. The mechanism for the colour change of iron chromium black pigments in glazes through transmission electron microscopy techniques. Dyes Pigments. 2011;91:126–33.

    Article  CAS  Google Scholar 

  9. Abu-Zied BH. Structural and catalytic activity studies of silver/chromia catalysts. Appl Catal A. 2000;198:139–53.

    Article  CAS  Google Scholar 

  10. Kitsunai H, Hokkirigawa K, Tsumaki N, Kato K. Transitions of microscopic wear mechanism for Cr2O3 ceramic coatings during repeated sliding observed in a scanning electron microscope tribosystem. Wear. 1991;151:279–89.

    Article  CAS  Google Scholar 

  11. Vijay R, Sundaresan R, Maiya MP, Srinivasa Murthy S. Hydrogen storage properties of Mg–Cr2O3 nanocomposites: the role of catalyst distribution and grain size. J Alloy Compd. 2006;424:289–93.

    Article  CAS  Google Scholar 

  12. Hou X, Choy KL. Synthesis of Cr2O3–based nanocomposite coatings with incorporation of inorganic fullerene-like nanoparticles. Thin Solid Films. 2008;51:8620–4.

    Article  Google Scholar 

  13. Cantalini C. Cr2O3, WO3 single and Cr/W binary oxide prepared by physical methods for gas sensing applications. J Eur Ceram Soc. 2004;24:142–4.

    Google Scholar 

  14. Yang J, Tao Q, Frost RL, Kristóf J, Horváth E. Studies on self-assembly hydrothermal fabrication and thermal stability of chromium oxyhydroxide nanomaterials synthesised from chromium oxide colloids. J Therm Anal Calorim. 2013;111:329–34.

    Article  CAS  Google Scholar 

  15. Penland RB, Mizushima S, Curran C, Quagliano JV. Infrared absorption spectra of inorganic coordination complexes X. Studies of some metal–urea complexes. J Am Chem Soc. 1957;79:1575–8.

    Article  CAS  Google Scholar 

  16. Lima MD, Bonadimann R, de Andrade MJ, Toniolo JC, Bergmann CP. Nanocrystalline Cr2O3 and amorphous CrO3 produced by solution combustion synthesis. J Eur Ceram Soc. 2006;26:1213–20.

    Article  CAS  Google Scholar 

  17. Schaber PM, Colson J, Higgins S, Thielen D, Anspach B, Brauer J. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim Acta. 2004;424:131–42.

    Article  CAS  Google Scholar 

  18. Biamino S, Badini C. Combustion synthesis of lanthanum chromite starting from water solutions: investigation of process mechanism by DTA–TGA–MS. J Eur Ceram Soc. 2004;24:3021–34.

    Article  CAS  Google Scholar 

  19. Melnikov P, Nascimento VA, Arkhangelsky IV, Zanoni Consolo LZ, de Oliveira LCS. Thermolysis mechanism of chromium nitrate nonahydrate and computerized modeling of intermediate products. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-013-3106-3.

    Google Scholar 

  20. Aghaie-Khafri M, Kakaei Lafdani MH. A novel method to synthesize Cr2O3 nanopowders using EDTA as a chelating agent. Powder Technol. 2012;222:152–9.

    Article  CAS  Google Scholar 

  21. Kim DW, Shin SI, Lee JD, Oh SG. Preparation of chromia nanoparticles by precipitation–gelation reaction. Mater Lett. 2004;58:1894–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21267016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Asuha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, M.L., Zhao, S. & Asuha, S. Synthesis and thermal decomposition of Cr–urea complex. J Therm Anal Calorim 115, 255–258 (2014). https://doi.org/10.1007/s10973-013-3260-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3260-7

Keywords

Navigation