Skip to main content
Log in

Studies on self-assembly hydrothermal fabrication and thermal stability of Chromium oxyhydroxide nanomaterials synthesised from Chromium oxide colloids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Chromium oxyhydroxide nanomaterials with narrow size-distribution were synthesised through a simple hydrothermal method. Experimental conditions, such as reaction duration and pH values of the precipitation process and hydrothermal treatment played important roles in determining the nature of the final product chromium oxyhydroxide nanomaterials. The effect of these synthesis parameters were studied with the assistance of X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and thermogravimetric analyses. This research has developed a controllable synthesis of Chromium oxyhydroxide nanomaterials from Chromium oxide colloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rotter H, Landau MV, Carrera M, Goldfarb D, Herskowitz M. High surface area chromia aerogel efficient catalyst and catalyst support for ethylacetate combustion. Appl Catal B Environ. 2004;47:111–26.

    Article  CAS  Google Scholar 

  2. Rotter H, Landau MV, Herskowitz M. Combustion of chlorinated VOC on nanostructured chromia aerogel as catalyst and catalyst support. Environ Sci Technol. 2005;39:6845–50.

    Article  CAS  Google Scholar 

  3. Nofz M, Sojref R, Feigl M, Dressler M, Doerfel I. Sol–gel alumina coatings for oxidation protection of high-temperature alloys. Part 2. Keramische Zeitschrift. 2009;61(272):274–7.

    Google Scholar 

  4. Yang X, Peng X, Xu C, Wang F. Electrochemical assembly of Ni–xCr–yAl nanocomposites with excellent high-temperature oxidation resistance. J Electrochem Soc. 2009;156:C167–75.

    Article  CAS  Google Scholar 

  5. Fujikawa J, Hata M, Kokaji K. Direct-current reactive sputtering for metal compound thin film without unreacted metal particles. Otsu: Nippon Electric Glass Co. Ltd.; 1998. p. 5.

    Google Scholar 

  6. Shigeta K, Goto K. Electron emitters having layers with controlled perpendicular and horizontal resistivity. Tokyo: Toray Industries Inc.; 2009. p. 10.

    Google Scholar 

  7. Abecassis-Wolfovich M, Rotter H, Landau MV, Korin E, Erenburg AI, Mogilyansky D, Garshtein E. Texture of chromia aerogels and structure of their nanocrystals. Stud Surf Sci Catal. 2003;146:247–50.

    Article  CAS  Google Scholar 

  8. Bai Y-L, Xu H-B, Zhang Y, Li Z-H. Reductive conversion of hexavalent in the preparation of ultra-fine chromia powder. J Phys Chem Solids. 2006;67:2589–95.

    Article  CAS  Google Scholar 

  9. Landau MV, Shter GE, Titelman L, Gelman V, Rotter H, Grader GS, Herskowitz M. Alumina foam coated with nanostructured chromia aerogel: efficient catalytic material for complete combustion of chlorinated VOC. Ind Eng Chem Res. 2006;45:7462–9.

    Article  CAS  Google Scholar 

  10. Simonova LA, Smyshlyaev SI, Tsymbal EP. Thermal stability and kinetics of the dehydration of amorphous hydroxide. Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya i Khimicheskaya Tekhnologiya. 1973;16:334–7.

    CAS  Google Scholar 

  11. Erenburg A, Gartstein E, Landau M. Structural characterization of nanocrystalline CrOOH·2H2O aerogel by X-ray diffraction. J Phys Chem Solids. 2005;66:81–90.

    Article  CAS  Google Scholar 

  12. Cheng H, Liu Q, Yang J, Zhang Q, Frost RL. Thermal behavior and decomposition of kaolinite–potassium acetate intercalation composite. Thermochim Acta. 2010;503–504:16–20.

    Article  Google Scholar 

  13. Yang J, Frost RL, Martens WN. Thermogravimetric analysis and hot-stage Raman spectroscopy of cubic indium hydroxide. J Therm Anal Calorim. 2010;100:109–16.

    Article  CAS  Google Scholar 

  14. Yang J, Liu H, Martens WN, Frost RL. Synthesis and characterization of cobalt hydroxide cobalt oxyhydroxide, and cobalt oxide nanodiscs. J Phys Chem C. 2010;114:111–9.

    Article  CAS  Google Scholar 

  15. Zhao Y, Yang J, Frost RL. Raman spectroscopy of the transition of α-gallium oxyhydroxide to β-gallium oxide nanorods. J Raman Spectrosc. 2008;39:1327–31.

    Article  CAS  Google Scholar 

  16. Bai Y-L, Xu H-B, Zhang Y, Li Z-H. Application of FTIR and XPS technique to the analysis of the mixture containing in a low valence state. Guangpuxue Yu Guangpu Fenxi. 2007;27:675–8.

    CAS  Google Scholar 

  17. Moffat TP, Latanision RM. An electrochemical and X-ray photoelectron spectroscopy study of the passive state of . J Electrochem Soc. 1992;139:1869–79.

    Article  CAS  Google Scholar 

  18. Ratnasamy P, Leonard AJ. Structural evolution of chromia. J Phys Chem. 1972;76:1838–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial and infrastructure support of the Queensland University of Technology Chemistry Discipline is gratefully acknowledged. The Australian Research Council (ARC) is thanked for funding the instrumentation. One of the authors (JY) is grateful to the Queensland University of Technology Chemistry Discipline for the award of an international doctoral scholarship/QUT Write-up scholarship. This study was supported by the Hungarian Ministry of Culture and Education under Grant no. TÁMOP-4.2.2-08/1/2008-0018. The financial and infrastructural support of the State of Hungary and the European Union in the frame of the TÁMOP-4.2.1/B-09/1/KONV-2010-0003 project is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Tao, Q., Frost, R.L. et al. Studies on self-assembly hydrothermal fabrication and thermal stability of Chromium oxyhydroxide nanomaterials synthesised from Chromium oxide colloids. J Therm Anal Calorim 111, 329–334 (2013). https://doi.org/10.1007/s10973-012-2262-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2262-1

Keywords

Navigation