Skip to main content
Log in

Calorimetric characterization of membrane materials based on polyvinyl alcohol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

There is ample scope for modification of polyvinyl alcohol (PVA) to derive diverse range of properties because of the presence of hydroxyl group in its chain. In the present work, PVA has been modified to carboxymethylated polyvinyl alcohol (CPVA) — a carboxy-functionalized membrane material. Generally the cohesive energy density has incremental influence on the melting point and mechanical strength of a material but in this case of CPVA even though theoretical cohesive energy density of CPVA is lower than that of PVA but paradoxically its mechanical strength was found to be higher than that of PVA (∼202 vis-à-vis 207°C and ∼174 vis-à-vis ∼58 MPa, respectively). Calorimetric evaluation along with the energy balance concept have provided meaningful information to justify such paradoxical feature as a result of the dominating role of intermolecular hydrogen bonding in CPVA to compensate for its relatively lower cohesive energy density typically 0.05 J m−3/2.

Thermal analysis has been made to examine the role of PVA and its carboxymethylated derivative (CPVA) towards moisture. It was observed that PVA membrane surface became sticky on exposure to water at 30°C for a period of 30 min, whereas under the same condition CPVA counterpart remained practically unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Jegal, N. W. Oh and K. H. Lee, J. Appl. Polym. Sci., 77 (2000) 347.

    Article  CAS  Google Scholar 

  2. Polyvinyl Alcohol, C. A. Finch, Ed., John Wiley, London 1973.

    Google Scholar 

  3. E. Immelman, R. D. Sanderson, E. E. Jacobs and A. J. VanReenen, J. Appl. Polym. Sci., 50 (1993) 1013.

    Article  CAS  Google Scholar 

  4. K. Koyama, M. Okada and M. Nishimura, J. Appl. Polym. Sci., 27 (1982) 2783.

    Article  CAS  Google Scholar 

  5. J. G. Jegal and K. H. Lee, J. Appl. Polym. Sci., 61 (1996) 389.

    CAS  Google Scholar 

  6. J. E. Cadotte, M. J. Steuck and R. J. Peterson, In situ formed condensation polymer for reverse osmosis membranes; Office of water research and technology, US Dept. of the interior, MRI Project No. 4277-N Final Report, March 1978.

  7. W. L. McCabe and J. C. Smith, Unit Operations of Chemical Engineering, 3rd Ed., International Student Ed. McGraw-Hill, Koakusha 1976.

    Google Scholar 

  8. W. Kemp, Organic Spectroscopy, ELBS, Longman Group UK, Ltd, Essex 1991.

    Google Scholar 

  9. Vogel’s Practical Organic Chemistry, 5th Ed., B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatchell, Eds, ELBS, Longman Group Ltd, Essex, UK 1991.

  10. J. L. Acosta, L. Gonzalez, M. C. Ojeda and C. D. Rio, J. Appl. Polym. Sci., 86 (2002) 3515.

    Article  CAS  Google Scholar 

  11. J. I. Kroschwitz, G. Menges, C. G. Overberger, N. M. Bikales and H. F. Mark, Encyclopeadia of Polymer Science and Engineering, 2nd Ed., Vol. 6, Wiley-Interscience, New York 1986.

    Google Scholar 

  12. G. S. Mukherjee and N. Shukla, Recent Advances in Polymers and Composites, The Allied Publishers, New Delhi 2000, pp. 401–404.

    Google Scholar 

  13. Y. Inai, S.-I. Kato, T. Hirabayashi and K. Yokota, J. Polym. Sci., Polym. Chem. Ed., Part A, 34 (1996) 2341.

    Article  CAS  Google Scholar 

  14. J. R. Dyer, Applications of Absorption Spectroscopy of Organic Compounds, Prentice-Hall, India 1984.

    Google Scholar 

  15. R. M. Walters, K. E. Sohn, K. I. Winey and R. J. Composto, J. Polym. Sci, Part B, Polym. Phys. Ed., 41 (2002) 2841.

    Google Scholar 

  16. P. A. Small, J. Appl. Chem., 3 (1953) 71.

    Article  CAS  Google Scholar 

  17. C. A. May and Y. Tanaka, Ed., Epoxy Resins Chemistry and Technology, Marcel and Dekker, New York 1973, p. 333.

    Google Scholar 

  18. K. K. Nanda, S. N. Sahu and S. N. Behera, Phys. Rev. A, 66 (2002) 013208.

    Google Scholar 

  19. H. H. Farrell and C. D. Van Sicien, J. Vac. Sci. Technol. B, 25 (2007) 1441.

    Article  CAS  Google Scholar 

  20. A. K. Kalsy, G. D. Nageshwar and P. S. Mene, Indian J. Technol., 12 (1974) 77.

    CAS  Google Scholar 

  21. G. S. Mukherjee and N. Shukla, Defence Sci. J., (2004).

  22. J. M. Zhan, G. B. Zhang, J. J. Wang, Y. L. Lu and D. Y. Shen, J. Polym. Sci., Part B, Polym. Phys. Ed., 40 (2002) 2772.

    Article  CAS  Google Scholar 

  23. S. I. Meerson and S. M. Lipatov, Kolloidn. Zh., 18 (1956) 447.

    CAS  Google Scholar 

  24. S. Oya, Kobunshi Kagaku, 12 (1955) 122 and 410.

    CAS  Google Scholar 

  25. K. Amaya and R. Fujishiro, Bull. Chem. Soc. Jpn., 29 (1956) 361 and 830.

    Article  CAS  Google Scholar 

  26. K. Tsunemitsu and H. Kishimoto, Polyvinyl alcohol, C. A. Finch, Ed., John Wiley, London 1973, Chapter 11, p. 234.

    Google Scholar 

  27. R. K. Tubbs and T. K. Wu, Polyvinyl Alcohol, C. A. Finch, Ed., John Wiley, London 1973, Chapter 8, p. 175.

    Google Scholar 

  28. M. Noroi, G. Kiuji and W. Tokuko, J. Phys. Chem., 90 (1986) 5420.

    Article  Google Scholar 

  29. M. Watase and K. Nishinari, Makromol Chem., 190 (1989) 155.

    Article  CAS  Google Scholar 

  30. D. Dibbern-Brunneli and T. D. Z. Atvars, J. Appl. Polym. Sci., 75 (2000) 815.

    Article  Google Scholar 

  31. A. Tager, Physical Chemistry of Polymers, Mir, Moscow 1978, p. 45.

    Google Scholar 

  32. J. A. Barrie, Diffusion in Polymers, J. Crank and G. S. Park, Eds, Academic Press, London, New York 1968, Chapter 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, G.S. Calorimetric characterization of membrane materials based on polyvinyl alcohol. J Therm Anal Calorim 96, 21–25 (2009). https://doi.org/10.1007/s10973-008-9833-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9833-1

Keywords

Navigation