Skip to main content
Log in

Solvable Phase Diagrams and Ensemble Inequivalence for Two-Dimensional and Geophysical Turbulent Flows

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using explicit analytical computations, generic occurrence of inequivalence between two or more statistical ensembles is obtained for a large class of equilibrium states of two-dimensional and geophysical turbulent flows. The occurrence of statistical ensemble inequivalence is shown to be related to previously observed phase transitions in the equilibrium flow topology. We find in these turbulent flow equilibria, two mechanisms for the appearance of ensemble equivalences, that were not observed in any physical systems before. These mechanisms are associated respectively with second-order azeotropy (simultaneous appearance of two second-order phase transitions), and with bicritical points (bifurcation from a first-order to two second-order phase transition lines). The important roles of domain geometry, of topography, and of a screening length scale (the Rossby radius of deformation) are discussed. It is found that decreasing the screening length scale (making interactions more local) surprisingly widens the range of parameters associated with ensemble inequivalence. These results are then generalized to a larger class of models, and applied to a complete description of an academic model for inertial oceanic circulation, the Fofonoff flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barré, J., Bouchet, F., Dauxois, T., Ruffo, S.: Large deviation techniques applied to systems with long-range interactions. J. Stat. Phys. 119, 677–713 (2005). doi:10.1007/s10955-005-3768-8

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Barré, J., Mukamel, D., Ruffo, S.: Inequivalence of ensembles in a system with long-range interactions. Phys. Rev. Lett. 87(3), 030601 (2001)

    Article  ADS  Google Scholar 

  3. Bouchet, F.: Mecanique statistique des ecoulements geophysiques. PHD, Universite Joseph Fourier-Grenoble (2001)

  4. Bouchet, F.: Simpler variational problems for statistical equilibria of the 2d Euler equation and other systems with long range interactions. Physica D, Nonlinear Phenom. 237, 1976–1981 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Bouchet, F., Barré, J.: Classification of Phase Transitions and Ensemble Inequivalence, in Systems with Long Range Interactions. J. Stat. Phys. 118, 1073–1105 (2005). doi:10.1007/s10955-004-2059-0

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Bouchet, F., Simonnet, E.: Random changes of flow topology in two-dimensional and geophysical turbulence. Phys. Rev. Lett. 102(9), 094504 (2009)

    Article  ADS  Google Scholar 

  7. Bouchet, F., Sommeria, J.: Emergence of intense jets and Jupiter’s great red spot as maximum-entropy structures. J. Fluid Mech. 464, 165–207 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Bouchet, F., Gupta, S., Mukamel, D.: Thermodynamics and dynamics of systems with long-range interactions. Physica A, Stat. Mech. Appl. 389, 4389–4405 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bretherton, F.P., Haidvogel, D.B.: Two-dimensional turbulence above topography. J. Fluid Mech. 78, 129–154 (1976)

    Article  MATH  ADS  Google Scholar 

  10. Caglioti, E., Lions, P.L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143, 501–525 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Caglioti, E., Lions, P.L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Part II. Commun. Math. Phys. 174, 229–260 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Campa, A., Dauxois, T., Ruffo, S.: Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480, 57–159 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Carnevale, G.F., Frederiksen, J.S.: Nonlinear stability and statistical mechanics of flow over topography. J. Fluid Mech. 175, 157–181 (1987)

    Article  MATH  ADS  Google Scholar 

  14. Charney, J.G.: On a physical basis for numerical prediction of large-scale motions in the atmosphere. J. Meteorol. 6(6), 372–385 (1949)

    Article  Google Scholar 

  15. Chavanis, P.H.: Phase transitions in self-gravitating systems: self-gravitating fermions and hard-sphere models. Phys. Rev. E 65(5), 056123 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  16. Chavanis, P.H.: Phase transitions in self-gravitating systems. Int. J. Mod. Phys. B 20, 3113–3198 (2006)

    Article  MATH  ADS  Google Scholar 

  17. Chavanis, P.H., Sommeria, J.: Classification of self-organized vortices in two-dimensional turbulence: the case of a bounded domain. J. Fluid Mech. 314, 267–297 (1996)

    Article  MATH  ADS  Google Scholar 

  18. Chomaz, P., Gulminelli, F.: Phase transition in small system. Nucl. Phys. A 749, 3–13 (2005)

    Article  ADS  Google Scholar 

  19. Corvellec, M., Bouchet, F.: A complete theory of low-energy phase diagrams for two-dimensional turbulence equilibria. In preparation (2011)

  20. Costeniuc, M., Ellis, R.S., Touchette, H.: Complete analysis of phase transitions and ensemble equivalence for the Curie-Weiss-Potts model. J. Math. Phys. 46, 063301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. Dauxois, T., Ruffo, S., Cugliandolo, L.F. (eds.): Long-Range Interacting Systems. Lecture Notes of the les Houches Summer School, August 2008, vol. 90 (2009)

    Google Scholar 

  22. Dauxois, T., Ruffo, S., Arimondo, E., Wilkens, M. (eds.): Dynamics and Thermodynamics of Systems With Long Range Interactions (2002)

    Google Scholar 

  23. Dauxois, T., de Buyl, P., Lori, L., Ruffo, S.: Models with short- and long-range interactions: the phase diagram and the reentrant phase. J. Stat. Mech. Theory Exp. 6, 15 (2010)

    Google Scholar 

  24. Dukowicz, J.K., Greatbatch, R.J.: Evolution of mean-flow Fofonoff gyres in barotropic quasigeostrophic turbulence. J. Phys. Oceanogr. 29, 1832–1852 (1999). doi:10.1175/1520-0485(1999)029

    Article  ADS  Google Scholar 

  25. Ellis, R.S., Haven, K., Turkington, B.: Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys. 101, 999 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ellis, R.S., Haven, K., Turkington, B.: Nonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows. Nonlinearity 15, 239–255 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Euler, L.: General principles of the motion of fluids. Physica D, Nonlinear Phenom. 237(14–17), 1825–1839 (2008). Euler Equations: 250 Years On—Proceedings of an International Conference

    Article  MATH  ADS  Google Scholar 

  28. Eyink, G.L., Spohn, H.: Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence. J. Stat. Phys. 70, 833–886 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Fisher, M.E., Nelson, D.R.: Spin flop, supersolids, and bicritical and tetracritical points. Phys. Rev. Lett. 32, 1350–1353 (1974)

    Article  ADS  Google Scholar 

  30. Fofonoff, N.P.: Steady flow in a frictionless homogeneous ocean. J. Mar. Res. 13, 254–262 (1954)

    MathSciNet  Google Scholar 

  31. Hasegawa, A., Mima, K.: Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. Phys. Fluids 21, 87–92 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Hertel, P., Thirring, W.: Free energy of gravitating fermions. Commun. Math. Phys. 24, 22–36 (1971)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Hertel, P., Thirring, W.: Soluble model for a system with negative specific heat. Ann. Phys. 63, 520–533 (1971)

    Article  ADS  Google Scholar 

  34. Ispolatov, I., Cohen, E.G.D.: Phase transitions in systems with 1/r α attractive interactions. Phys. Rev. E 64(5), 056103 (2001)

    Article  ADS  Google Scholar 

  35. Kiessling, M.K.H.: Statistical mechanics of classical particles with logarithmic interactions. Commun. Pure Appl. Math. 47, 27–56 (1993)

    Article  MathSciNet  Google Scholar 

  36. Kiessling, M.K.H., Lebowitz, N.: The micro-canonical point vortex ensemble: beyond equivalence. Lett. Math. Phys. 42(1), 43–56 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  37. Kiessling, M.K.H., Neukirch, T.: Negative specific heat of a magnetically self-confined plasma torus. Proc. Natl. Acad. Sci. 100, 1510–1514 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Kraichnan, R.H., Montgomery, D.: Two-dimensional turbulence. Rep. Prog. Phys. 43, 547–619 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  39. Landau, L.D., Lifshitz, E.M., Reichl, L.E.: Statistical physics, Part 1 (3rd edn.). Phys. Today 34, 74 (1981). doi:10.1063/1.2889978

    Article  ADS  Google Scholar 

  40. Lynden-Bell, D., Wood, R.: The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Mon. Not. R. Astron. Soc. 138, 495 (1968)

    ADS  Google Scholar 

  41. Macor, A., Doveil, F., Elskens, Y.: Electron climbing a “Devil’s Staircase” in wave-particle interaction. Phys. Rev. Lett. 95(26), 264102 (2005)

    Article  ADS  Google Scholar 

  42. Michel, J., Robert, R.: Large deviations for young measures and statistical mechanics of infinite dimensional dynamical systems with conservation law. Commun. Math. Phys. 159, 195–215 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. Michel, J., Robert, R.: Statistical mechanical theory of the great red spot of Jupiter. J. Stat. Phys. 77, 645–666 (1994)

    Article  MATH  ADS  Google Scholar 

  44. Miller, J.: Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett. 65(17), 2137–2140 (1990). doi:10.1103/PhysRevLett.65.2137

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Naso, A., Chavanis, P.H., Dubrulle, B.: Statistical mechanics of Fofonoff flows in an oceanic basin. ArXiv e-prints (2009)

  46. Naso, A., Chavanis, P.H., Dubrulle, B.: Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states. ArXiv e-prints (2009)

  47. Padmanabhan, T.: Statistical mechanics of gravitating systems. Phys. Rep. 188, 285 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York/Berlin (1982), 636 p.

    Google Scholar 

  49. Ripa, P.: Symmetries and conservation laws for internal gravity waves. In: American Institute of Physics Conference Series. American Institute of Physics Conference Series, vol. 76, pp. 281–306 (1981)

    Google Scholar 

  50. Robert, R.: Etats d’equilibre statistique pour l’ecoulement bidimensionnel d’un fluide parfait. C. R. Acad. Sci. 1, 575–578 (1990)

    Google Scholar 

  51. Robert, R.: A maximum-entropy principle for two-dimensional perfect fluid dynamics. J. Stat. Phys. 65, 531–553 (1991)

    Article  MATH  ADS  Google Scholar 

  52. Robert, R., Sommeria, J.: Statistical equilibrium states for two-dimensional flows. J. Fluid Mech. 229, 291–310 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. Robert, R., Sommeria, J.: Relaxation towards a statistical equilibrium state in two-dimensional perfect fluid dynamics. Phys. Rev. Lett. 69(19), 2776–2779 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. Salmon, R.: Lectures on Geophysical Fluid Dynamics. Oxford University Press, Oxford (1998)

    Google Scholar 

  55. Salmon, R., Holloway, G., Hendershott, M.C.: The equilibrium statistical mechanics of simple quasi-geostrophic models. J. Fluid Mech. 75, 691–703 (1976)

    Article  MATH  ADS  Google Scholar 

  56. Smith, R.A., O’Neil, T.M.: Nonaxisymmetric thermal equilibria of a cylindrically bounded guiding-center plasma or discrete vortex system. Phys. Fluids B 2, 2961–2975 (1990)

    Article  ADS  Google Scholar 

  57. Stahl, B., Kiessling, M.K.H., Schindler, K.: Phase transitions in gravitating systems and the formation of condensed objects. Planet. Space Sci. 43, 271–282 (1995)

    Article  ADS  Google Scholar 

  58. Staniscia, F., Chavanis, P.H., De Ninno, G.: Out-of-equilibrium phase transitions in the HMF model: a closer look. ArXiv e-prints (2010)

  59. Thirring, W.: Systems with negative specific heat. Z. Phys. 235, 339–352 (1970). doi:10.1007/BF01403177

    Article  ADS  Google Scholar 

  60. Touchette, H., Ellis, R.S., Turkington, B.: An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles. Physica A, Stat. Mech. Appl. 340, 138–146 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  61. Venaille, A., Bouchet, F.: Statistical ensemble inequivalence and bicritical points for two-dimensional flows and geophysical flows. Phys. Rev. Lett. 102(10), 104501 (2009)

    Article  ADS  Google Scholar 

  62. Venaille, A., Bouchet, F.: Solvable phase diagrams and ensemble inequivalence for two-dimensional and geophysical turbulent flows. ArXiv e-prints, submitted to Journal of Physical Oceanography (2010)

  63. Wang, J., Vallis, G.K.: Emergence of Fofonoff states in inviscid and viscous ocean circulation models. J. Marine Res. 83–127 (1994)

  64. Zou, J., Holloway, G.: Entropy maximization tendency in topographic turbulence. J. Fluid Mech. 263, 361–374 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddy Bouchet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venaille, A., Bouchet, F. Solvable Phase Diagrams and Ensemble Inequivalence for Two-Dimensional and Geophysical Turbulent Flows. J Stat Phys 143, 346–380 (2011). https://doi.org/10.1007/s10955-011-0168-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0168-0

Keywords

Navigation