Skip to main content
Log in

Investigation of the Interaction Between Ofloxacin and Bovine Serum Albumin: Spectroscopic Approach

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Ofloxacin is an antibacterial compound that belongs to the fluoroquinolone family. In this paper, the interaction between ofloxacin and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy and UV-Vis absorbtion spectroscopy under approximately the human physiological conditions. The thermodynamic parameters were calculated according to the dependence of enthalpy change on the temperature as follows: ΔH has a small negative value (−9.96 kJ⋅mol−1), whereas ΔS has a positive value (54.77 J⋅mol−1⋅K−1). In this work, it was proved that the fluorescence quenching of BSA by ofloxacin is a result of the formation of an ofloxacin–BSA complex. Binding studies concerning the number of binding sites (n=1.14) and apparent binding constant were performed by Scatchard’s procedure. The binding distance r between donor (BSA) and acceptor (ofloxacin) was obtained according to the fluorescence resonance energy transfer (FRET) method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheng, Z., Cao, X., Peng, S., Wang, C., Li, Q., Wang, Y., Liu, M.: Ofloxacin induces apoptosis in microencapsulated juvenile rabbit chondrocytes by caspase-8-dependent mitochondrial pathway. Toxicol. Appl. Pharmacol. 226, 119–127 (2008)

    Article  CAS  Google Scholar 

  2. Nakata, H., Kannan, K., Jones, P.D., Giesy, J.P.: Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography–mass spectrometry and fluorescence detection. Chemosphere 58, 759–766 (2005)

    Article  CAS  Google Scholar 

  3. Park, H.R., Kim, T.H., Bark, K.M.: Physicochemical properties of quinolone antibiotics in various environments. Eur. J. Med. Chem. 37, 443–460 (2002)

    Article  CAS  Google Scholar 

  4. Horstkötter, C., Blaschke, G.: Stereoselective determination of ofloxacin and its metabolites in human urine by capillary electrophoresis using laser-induced fluorescence detection. J. Chromatogr. B 754, 169–178 (2001)

    Article  Google Scholar 

  5. Sree, H., Chandramouli, R., Shobha, R.: Ofloxacin targeting to lungs by way of microspheres. Int. J. Pharm. 380, 127–132 (2009)

    Article  Google Scholar 

  6. Smet, J.D., Boussery, K., Colpaert, K., Sutter, P.D., Paepe, P.D., Decruyenaere, J., Bocxlaer, J.V.: Pharmacokinetics of fluoroquinolones in critical care patients: A bio-analytical HPLC method for the simultaneous quantification of ofloxacin, ciprofloxacin and moxifloxacin in human plasma. J. Chromatogr. B 877, 961–967 (2009)

    Article  Google Scholar 

  7. Cui, Y., Zhang, Y., Tang, X.: In vitro and in vivo evaluation of ofloxacin sustained release pellets. Int. J. Pharm. 360, 47–52 (2008)

    Article  CAS  Google Scholar 

  8. Wang, H., Liao, Z.X., Chen, M., Hu, X.L.: Effects of hepatic fibrosis on ofloxacin pharmacokinetics in rats. Pharm. Res. 53, 28–34 (2006)

    Article  CAS  Google Scholar 

  9. Shen, J.Y., Kim, M.R., Lee, C.J., Kim, I.S., Lee, K.B., Shim, J.H.: Supercritical fluid extraction of the fluoroquinolones norfloxacin and ofloxacin from orally treated-chicken breast muscles. Anal. Chim. Acta 513, 451–455 (2004)

    Article  CAS  Google Scholar 

  10. Kumar, C.V., Buranaprapuk, A., Opiteck, G.J., Moyer, M.B., Jockusch, S., Turro, N.J.: Photochemical protease: Site-specific photocleavage of hen egg lysozyme and bovine serum albumin. Proc. Natl. Acad. Sci. USA 95, 10361–10366 (1998)

    Article  CAS  Google Scholar 

  11. He, X.M., Carter, D.C.: Atomic structure and chemistry of human serum albumin. Nature 358, 209–215 (1992)

    Article  CAS  Google Scholar 

  12. Olson, R.E., Christ, D.D.: Plasma protein binding of drugs. Ann. Rep. Med. Chem. 31, 327–336 (1996)

    Article  CAS  Google Scholar 

  13. Carter, D.C., Chang, B., Ho, J.X., Keeling, K., Krishnasami, Z.: Preliminary crystallographic studies of four crystal forms of serum albumin. Eur. J. Biochem. 226, 1049–1052 (1994)

    Article  CAS  Google Scholar 

  14. Dockal, M., Carter, D.C., Rüker, F.: Conformational transitions of the three recombinant domains of human serum albumin depending on pH. J. Biol. Chem. 275, 3042–3050 (2000)

    Article  CAS  Google Scholar 

  15. Yan, H., Zhao, S., Yang, J., Zhu, X., Dai, G., Liang, H., Pan, F., Weng, L.: Interaction between levamisole hydrochloride and bovine serum albumin and the influence of alcohol: Spectra. J. Solution Chem. 38, 1183–1192 (2009)

    Article  CAS  Google Scholar 

  16. Wen, M.G., Zhang, X.B., Tian, J.N., Ni, S.H., Bian, H.D., Huang, Y.L., Liang, H.: Binding interaction of xanthoxylin with bovine serum albumin. J. Solution Chem. 38, 391–401 (2009)

    Article  CAS  Google Scholar 

  17. Hu, Y.J., Liu, Y., Xiao, X.H.: Investigation of the interaction between berberine and human serum albumin. Biomacromolecules 10, 517–521 (2009)

    Article  CAS  Google Scholar 

  18. Zhang, G., Keita, B., Craescu, C.T., Miron, S., Oliveira, P., Nadjo, L.: Molecular interactions between Wells–Dawson type polyoxometalates and human serum albumin. Biomacromolecules 9, 812–817 (2008)

    Article  CAS  Google Scholar 

  19. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn. Plenum Press, New York (2006)

    Google Scholar 

  20. Lehrer, S.S.: Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10, 3254–3263 (1971)

    Article  CAS  Google Scholar 

  21. Li, J., Liu, X., Ren, C., Li, J., Sheng, F., Hu, Z.: In vitro study on the interaction between thiophanate methyl and human serum albumin. J. Photochem. Photobiol., B Biol. 94, 158–163 (2009)

    Article  CAS  Google Scholar 

  22. Colmenarejo, G., Alvarez-Pedraglio, A., Lavandera, J.L.: Cheminformatic models to predict binding affinities to human serum albumin. J. Med. Chem. 44, 4370–4378 (2001)

    Article  CAS  Google Scholar 

  23. Ross, P.D., Subramanian, S.: Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 20, 3096–3102 (1981)

    Article  CAS  Google Scholar 

  24. Timaseff, S.N.: Thermodynamics of protein interactions. In: H. Peeters (ed.), Proteins of Biological Fluids. Pergamon, Oxford (1972)

    Google Scholar 

  25. Yang, J.Y., Yang, W.Y.: Site-specific two-color protein labeling for FRET studies using split inteins. J. Am. Chem. Soc. 131, 11644–11645 (2009)

    Article  CAS  Google Scholar 

  26. Valeur, B., Brochon, J.C.: New Trends in Fluorescence Spectroscopy, p. 25. Springer, Berlin (2001)

    Google Scholar 

  27. Monti, S., Manet, I., Manoli, F., Capobianco, M.L., Marconi, G.: Gaining an insight into the photoreactivity of a drug in a protein environment: A case study on nalidixic acid and serum albumin. J. Phys. Chem. B 112, 5742–5754 (2008)

    Article  CAS  Google Scholar 

  28. Miller, J.N.: Recent advances in molecular luminescence analysis. Proc. Anal. Div. Chem. Soc. 16, 203–208 (1979)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, YJ., Ou-Yang, Y., Bai, AM. et al. Investigation of the Interaction Between Ofloxacin and Bovine Serum Albumin: Spectroscopic Approach. J Solution Chem 39, 709–717 (2010). https://doi.org/10.1007/s10953-010-9527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9527-8

Keywords

Navigation