Skip to main content
Log in

Study of β-lactam-based drug interaction with albumin protein using optical, sensing, and docking methods

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The quality and strength of drug and albumin interaction affecting the drug-free concentration and physiological activity are important issues in pharmacokinetic research. In the present study, not only did we evaluate the binding strength of ceftriaxone and ceftizoxime to bovine serum albumin (BSA), but we also investigated the kinetic and thermodynamic parameters including KD, KA, ΔS, and ΔH. We applied in vitro optical fluorescence spectroscopy and surface plasmon resonance (SPR) sensing approaches as well as molecular docking analyses. The kinetic and thermodynamic investigations were done using different concentrations of drugs at three temperatures. Thermodynamic parameters visibly demonstrated that the binding was an exothermic and spontaneous process. The obtained negative values of both enthalpy change (ΔH) and entropy change (ΔS) in fluorescence and SPR and also molecular docking investigations showed that the major binding force involved in the complexation of drugs to BSA was hydrogen bonding. Static quenching was the foremost fluorescence quenching mechanism between them. Furthermore, the results of ΔG and KD values proved that the interaction of ceftriaxone-BSA was stronger than ceftizoxime-BSA. Finally, molecular docking confirmed that the preferable binding sites of ceftizoxime and ceftriaxone were site IIA and site IB of albumin, respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available on request from the corresponding author.

Code availability

Trace Drawer TM for SPR NaviTM and Auto Dock Vina.

References

  1. Lutsar, I., Friedland, I.R.: Pharmacokinetics and pharmacodynamics of cephalosporins in cerebrospinal fluid. Clin. Pharmacokinet. 39, 335–343 (2000)

    Article  Google Scholar 

  2. Balant, L.P., Dayer, P., Auckenthaler, R.: Clinical pharmacokinetics of the third generation cephalosporins. Clin. Pharmacokinet. 10, 101–143 (1985)

    Article  Google Scholar 

  3. Siddiqi, M.K., Alam, P., Chaturvedi, S.K., Nusrat, S., Ajmal, M.R., Abdelhameed, A.S., Khan, R.H.: Probing the interaction of cephalosporin antibiotic–ceftazidime with human serum albumin: a biophysical investigation. Int. J. Biol. Macromol. 105, 292–299 (2017)

    Article  Google Scholar 

  4. Bi, S., Song, D., Tian, Y., Zhou, X., Liu, Z., Zhang, H.: Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim. Acta A Mol. Biomol. Spectrosc. 61, 629–636 (2005)

    Article  ADS  Google Scholar 

  5. Sameena, Y., Sudha, N., Chandrasekaran, S., Enoch, I.V.: The role of encapsulation by β-cyclodextrin in the interaction of raloxifene with macromolecular targets: a study by spectroscopy and molecular modeling. J. Biol. Phys. 40, 347–367 (2014)

    Article  Google Scholar 

  6. Wu, J., Bi, S.Y., Sun, X.Y., Zhao, R., Wang, J.H., Zhou, H.F.: Study on the interaction of fisetholz with BSA/HSA by multi-spectroscopic, cyclic voltammetric, and molecular docking technique. J. Biomol. Struct. Dyn. 37, 3496–3505 (2019)

    Article  Google Scholar 

  7. Rajendiran, N., Thulasidhasan, J.: Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: spectroscopic and molecular docking investigations. Spectrochim. Acta A Mol Biomol. Spectrosc. 144, 183–191 (2015)

    Article  ADS  Google Scholar 

  8. Balani, S.K., Miwa, G.T., Gan, L.S., Wu, J.T., Lee, F.W.: Strategy of utilizing in vitro and in vivo ADME tools for lead optimization and drug candidate selection. Curr. Top. Med. Chem. 5, 1033–1038 (2005)

    Article  Google Scholar 

  9. Skakauskas, V., Katauskis, P.: Modeling of a single nanoparticle interaction with the human blood plasma proteins. J. Biol. Phys. 44, 605–617 (2018)

    Article  Google Scholar 

  10. Maleki, S., Arabzadeh, A., Nejati, K., Fathi, F.: Exploring the interactions of a natural gamma-oryzanol with human serum albumin: surface plasmon resonance, fluorescence, and molecular modeling studies. Drug Res. 71, 520–527 (2021)

    Article  Google Scholar 

  11. Levison, M.E., Levison, J.H.: Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect. Dis. Clin. North Am. 23, 791–815 (2009)

    Article  Google Scholar 

  12. Pacifici, G.M.: Pharmacokinetics of cephalosporins in the neonate: a review. Clinics 66, 1267–1274 (2011)

    Article  Google Scholar 

  13. Baig, M.H., Rahman, S., Rabbani, G., Imran, M., Ahmad, K., Choi, I.: Multi-spectroscopic characterization of human serum albumin binding with cyclobenzaprine hydrochloride: insights from biophysical and in silico approaches. Int. J. Mol. Sci. 20, 662 (2019)

    Article  Google Scholar 

  14. Yang, M., Xi, X., Yang, P.: Thermodynamic analysis of fluorescence enhancement and Quenching theory equations. Front. Chem. 3, 254–261 (2008)

    Google Scholar 

  15. Hamishehkar, H., Hosseini, S., Naseri, A., Safarnejad, A., Rasoulzadeh, F.: Interactions of cephalexin with bovine serum albumin: displacement reaction and molecular docking. BioImpacts 6, 125 (2016)

    Article  Google Scholar 

  16. Nogues, C., Leh, H., Langendorf, C.G., Law, R.H., Buckle, A.M., Buckle, M.: Characterisation of peptide microarrays for studying antibody-antigen binding using surface plasmon resonance imagery. PloS ONE 5, e12152 (2010)

  17. Jebelli, A., Oroojalian, F., Fathi, F., Mokhtarzadeh, A., de la Guardia, M.: Recent advances in surface plasmon resonance biosensors for microRNAs detection. Biosens. Bioelectron. 112599 (2020)

  18. Masson, J.F., Booksh, K.S.: Qualitative analysis of excess dielectric properties of binary mixtures, ternary mixtures and mixing dynamics measurement using surface plasmon resonance. Thermochim. Acta 432, 83–90 (2005)

    Article  Google Scholar 

  19. Rezabakhsh, A., Rahbarghazi, R., Fathi, F.: Surface plasmon resonance biosensors for detection of Alzheimer's biomarkers; an effective step in early and accurate diagnosis. Biosens. Bioelectron. 167, 112511 (2020)

  20. Fathi, F., Dolatanbadi, J.E.N., Rashidi, M.-R., Omidi, Y.: Kinetic studies of bovine serum albumin interaction with PG and TBHQ using surface plasmon resonance. Int. J. Biol. Macromol. 91, 1045–1050 (2016)

    Article  Google Scholar 

  21. Fathi, F., Rahbarghazi, R., Movassaghpour, A.A., Rashidi, M.R.: Detection of CD133-marked cancer stem cells by surface plasmon resonance: its application in leukemia patients. Biochim. Biophys. Acta Gen. Subj. 1863, 1575–1582 (2019)

    Article  Google Scholar 

  22. Sarimov, R.M., Matveyeva, T.A., Binhi, V.N.: Laser interferometry of the hydrolytic changes in protein solutions: the refractive index and hydration shells. J. Biol. Phys. 44, 345–360 (2018)

    Article  Google Scholar 

  23. Banères-Roquet, F., Gualtieri, M., Villain-Guillot, P., Pugnière, M., Leonetti, J.P.: Use of a surface plasmon resonance method to investigate antibiotic and plasma protein interactions. Antimicrob. Agents Chemother. 53, 1528–1531 (2009)

    Article  Google Scholar 

  24. Ascoli, G.A., Domenici, E., Bertucci, C.: Drug binding to human serum albumin: abridged review of results obtained with high-performance liquid chromatography and circular dichroism. Chirality 18, 667–679 (2006)

    Article  Google Scholar 

  25. Morton, T.A., Myszka, D.G.: Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Meth. Enzymol. 295, 268–294 (1998)

    Article  Google Scholar 

  26. Taghipour, P., Zakariazadeh, M., Sharifi, M., Ezzati Nazhad Dolatabadi, J., Barzegar, A.: Bovine serum albumin binding study to erlotinib using surface plasmon resonance and molecular docking methods. J. Photochem. Photobiol. 183, 11–15 (2018)

  27. Karami, K., Rahimi, M., Zakariazadeh, M., Buyukgungor, O., Amirghofran, Z.: New phosphorus ylide palladacyclic: synthesis, characterization, X-Ray crystal structure, biomolecular interaction studies, molecular docking and in vitro cytotoxicity evaluations. J. Organomet. Chem. 878, 60–76 (2018)

    Article  Google Scholar 

  28. Karami, K., Rafiee, M., Lighvan, Z.M., Zakariazadeh, M., Faal, A.Y., Esmaeili, S.A., Momtazi-Borojeni, A.A.: Synthesis, spectroscopic characterization and in vitro cytotoxicities of new organometallic palladium complexes with biologically active β-diketones; biological evaluation probing of the interaction mechanism with DNA/protein and molecular docking. J. Mol. Struct. 1154, 480–495 (2018)

    Article  ADS  Google Scholar 

  29. Bolattin, M.B., Nandibewoor, S.T., Joshi, S.D., Dixit, S.R., Chimatadar, S.A.: Interaction between carisoprodol and bovine serum albumin and effect of β-cyclodextrin on binding: insights from molecular docking and spectroscopic techniques. RSC Adv. 6, 63463–63471 (2016)

    Article  ADS  Google Scholar 

  30. Farahani, B.V., Bardajee, G.R., Rajabi, F.H., Hooshyar, Z.: Study on the interaction of Co (III) DiAmsar with serum albumins: Spectroscopic and molecular docking methods. Spectrochim. Acta A Mol. Biomol. 135, 410–416 (2015)

    Article  ADS  Google Scholar 

  31. Tan, M., Liang, W., Luo, X., Gu, Y.: Fluorescence spectroscopy study on the interaction between evodiamine and bovine serum albumin. J. Chem. (2013)

  32. Naik, P., Chimatadar, S., Nandibewoor, S.: Interaction between a potent corticosteroid drug–dexamethasone with bovine serum albumin and human serum albumin: a fluorescence quenching and fourier transformation infrared spectroscopy study. J. Photochem. Photobiol. 100, 147–159 (2010)

    Article  Google Scholar 

  33. Sułkowska, A.: Interaction of drugs with bovine and human serum albumin. J. Mol. Struct. 614, 227–232 (2002)

    Article  ADS  Google Scholar 

  34. Li, X., Ni, T.: Probing the binding mechanisms of α-tocopherol to trypsin and pepsin using isothermal titration calorimetry, spectroscopic, and molecular modeling methods. J. Biol. Phys. 42, 415–434 (2016)

    Article  ADS  Google Scholar 

  35. Alanazi, M.M., Almehizia, A.A., Bakheit, A.H., Alsaif, N.A., Alkahtani, H.M., Wani, T.A.: Mechanistic interaction study of 5, 6-Dichloro-2-[2-(pyridin-2-yl) ethyl] isoindoline-1, 3-dione with bovine serum albumin by spectroscopic and molecular docking approaches. Saudi Pharm. J. 27, 341–347 (2019)

    Article  Google Scholar 

  36. Lin, H., Lan, J., Guan, M., Sheng, F., Zhang, H.: Spectroscopic investigation of interaction between mangiferin and bovine serum albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 73, 936–941 (2009)

    Article  ADS  Google Scholar 

  37. Pan, J., Ye, Z., Cai, X., Wang, L., Cao, Z.: Biophysical study on the interaction of ceftriaxone sodium with bovine serum albumin using spectroscopic methods. J. Biochem. Mol. Toxicol. 26, 487–492 (2012)

    Article  Google Scholar 

  38. Abdullah, S.M., Fatma, S., Rabbani, G., Ashraf, J.M.: A spectroscopic and molecular docking approach on the binding of tinzaparin sodium with human serum albumin. J. Mol. Struct. 1127, 283–288 (2017)

    Article  ADS  Google Scholar 

  39. Anand, U., Jash, C., Boddepalli, R.K., Shrivastava, A., Mukherjee, S.: Exploring the mechanism of fluorescence quenching in proteins induced by tetracycline. J. Phys. Chem. 115, 6312–6320 (2011)

    Article  Google Scholar 

  40. Fotoran, W.L., Müntefering, T., Kleiber, N., Miranda, B.N., Liebau, E., Irvine, D.J., Wunderlich, G.: A multilamellar nanoliposome stabilized by interlayer hydrogen bonds increases antimalarial drug efficacy. Nanomed. Nanotechnol. Biol. Med. 22, 102099 (2019)

  41. Khajeh, S., Tohidkia, M.R., Aghanejad, A., Mehdipour, T., Fathi, F., Omidi, Y.: Phage display selection of fully human antibody fragments to inhibit growth-promoting effects of glycine-extended gastrin 17 on human colorectal cancer cells. Artif. Cells Nanomed. Biotechnol. 46, 1082–1090 (2018)

    Article  Google Scholar 

  42. Fathi, F., Dolatanbadi, J.E.N., Rashidi, M.R., Omidi, Y.: Kinetic studies of bovine serum albumin interaction with PG and TBHQ using surface plasmon resonance. Int. J. Biol Macromol. 91, 1045–1050 (2016)

  43. Haaland, A.: Covalent versus dative bonds to main group metals, a useful distinction. Angew. Chem. Int. Ed. 28, 992–1007 (1989)

    Article  Google Scholar 

  44. Wang, S.F.: A small-displacement sensor using total internal reflection theory and surface plasmon resonance technology for heterodyne interferometry. Sensors 9, 2498–2510 (2009)

    Article  ADS  Google Scholar 

  45. Redman, J.E.: Surface plasmon resonance for probing quadruplex folding and interactions with proteins and small molecules. Methods 43, 302–312 (2007)

    Article  Google Scholar 

  46. Srinivasan, S.K., Tewary, H.K., Iversen, P.L.: Characterization of binding sites, extent of binding, and drug interactions of oligonucleotides with albumin. Antisense Res. Dev. 5, 131–139 (1995)

    Article  Google Scholar 

  47. Gomes, D.E., Caruso, Í.P., de Araujo, G.C., de Lourenco, I.O., de Melo, F.A., Cornélio, M.L., Fossey, M.A., de Souza, F.P.: Experimental evidence and molecular modeling of the interaction between hRSV-NS1 and quercetin. Int. J. Biol. Macromol. 85, 40–47 (2016)

    Article  Google Scholar 

  48. Yusof, I., Segall, M.D.: Considering the impact drug-like properties have on the chance of success. Drug Discov. 18, 659–666 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support (grant no: IR.ARUMS.REC.1399.021) from the Ardabil University of Medical Sciences.

Funding

This paper was supported by the Ardabil University of Medical Sciences (grant no: IR.ARUMS.REC.1399.021).

Author information

Authors and Affiliations

Authors

Contributions

F Fathi studied conception and design, performed SPR experiments, prepared draft manuscript, and co-wrote the paper; H Monirinasab performed spectral experiments and co-wrote the paper; M Zakariazadeh performed docking analyses; H Kohestani analyzed data and co-wrote the paper; and Morteza Kouhestani analyzed and interpreted the results.

Corresponding author

Correspondence to Farzaneh Fathi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 5011 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monirinasab, H., Zakariazadeh, M., Kohestani, H. et al. Study of β-lactam-based drug interaction with albumin protein using optical, sensing, and docking methods. J Biol Phys 48, 177–194 (2022). https://doi.org/10.1007/s10867-021-09599-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-021-09599-0

Keywords

Navigation