Skip to main content
Log in

Electrical Conductance and Volumetric Studies in Aqueous Solutions of DL-Pyroglutamic Acid

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Conductivity measurements of DL-pyroglutamic acid and sodium pyroglutamate in dilute aqueous solutions were performed in the 288.15–323.15 K temperature range. The limiting molar conductances of pyroglutamate anion, λo(pGlu, T) and the dissociation constants of pyroglutamic acid, K(T) were derived from the Onsager, and the Quint and Viallard conductivity equations. Densities of aqueous solutions with molalities lower than 0.5 mol-kg−1 were determined at 5 K intervals from T = 288.15 K to 333.15 K. Densities served to evaluate the apparent molar volumes, V2,φ(m, T), the cubic expansion coefficients, α (m,T) and the changes of the isobaric heat capacities with respect to pressure, (∂ C P /∂ P)T,m. They were correlated qualitatively with the changes in the structure of water when pyroglumatic acid is dissolved in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. N. Yoon, H. C. Chung, J. H. Jang, and U. Y. Kong. Use of Pyroglutamic Acid for Improving the Gastroenteric Trobles and Treatment of the Gastroenteric Disorders, and Beverages Containing the Same (Cheil Jedanang, S. Korea, 1999).

    Google Scholar 

  2. P. J. Rennie, S. P. King, K. A. Biedermann, and J. M. Jeffrey, PCT Int. Appl. (2001).

  3. R. B. Turner, K. M. Biedermann, J. M. Morgan, B. Keswick, K. D. Keith, and M. F. Barker, Antimicrob. Chemother. 48, 2595 (2004).

    Article  Google Scholar 

  4. R. F. Evans, E. F. G. Herington, and W. Kynaston, Trans. Faraday Soc. 49, 1284 (1953).

    Article  Google Scholar 

  5. H. Geoffroy, Parfuemerie Kosmetik 72, 94 (1991).

    Google Scholar 

  6. C. M. McCay and C. L. A. Schmidt, J. Gen. Physiol. 9, 333 (1926)

    Article  Google Scholar 

  7. V. Zafouk, Listy Cukrovarnicke 46, 631 (1928).

    Google Scholar 

  8. V. Zafouk, Z. Zuckerindustrie Cechoslov. Republik 53, 465 (1929).

    Google Scholar 

  9. A. Fini, P. De Maria, A. Guarnieri, and L. Varoli, J. Pharm. Sci. 76, 48 (1987).

    PubMed  Google Scholar 

  10. A. Apelblat, D. Azoulay, and A. Sahar, J. C. S. Faraday I 69, 1618 (1973).

    Article  Google Scholar 

  11. A. Apelblat and E. Manzurola, J. Chem. Thermodyn. 33, 1157 (2001).

    Article  Google Scholar 

  12. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, 3rd edn. (Reinhold, New York, 1958).

    Google Scholar 

  13. E. F. G. Herington, Pure Appl. Chem. 48, 1 (1976).

    Google Scholar 

  14. L. Korson, W. Drost-Hansen, and F. J. Millero, J. Phys. Chem. 73, 34 (1969).

    Article  Google Scholar 

  15. B. B. Owen, R. C. Miller, C. E. Miller, and H. L. Cogan, J. Am. Chem. Soc. 83, 2065 (1961)

    Article  Google Scholar 

  16. S. B. Brummer and G. J. Hills, Trans. Faraday Soc. 53, 414 (1949).

    Google Scholar 

  17. J. Kielland, J. Am. Chem. Soc. 59, 1675 (1937).

    Article  Google Scholar 

  18. D. C. Harris, Quantitative Chemical Analysis (Freeman, San Francisco, 1982).

    Google Scholar 

  19. J. Quint, PhD Thesis, University Clermont-Ferrand, France, April 1976.

  20. J. Quint and A. Viallard, J. Solution Chem. 7, 137, 525, 533 (1978).

  21. A. Apelblat and J. Barthel, Z. Naturforsch. 46a, 131 (1978).

    Google Scholar 

  22. E. N. Tsurko, R. Neueder, J. Barthel, and A. Apelblat, J. Solution Chem. 28, 973 (1999).

    Article  Google Scholar 

  23. M. Bešter-Rogaĉ, R. Neueder, J. Barthel, and A. Apelblat, J. Solution Chem. 26, 127 (1997).

    Google Scholar 

  24. M. Bešter-Rogaĉ, R. Neueder, J. Barthel, and A. Apelblat, J. Solution Chem. 26, 299 (1997).

    Google Scholar 

  25. M. Bešter-Rogaĉ, M. Tomšic, J. Barthel, R. Neueder, and A. Apelblat, J. Solution Chem. 31, 1 (2002).

    Article  Google Scholar 

  26. E. J. King, J. Phys. Chem. 73, 1220 (1969).

    Article  Google Scholar 

  27. A. Apelblat and E. Manzurola, J. Chem. Thermodyn. 31, 1 (1999).

    Article  Google Scholar 

  28. L. G. Hepler, Can. J. Chem. 47, 4613 (1969).

    Google Scholar 

  29. T. Ackermann, Discuss. Faraday Soc. 24, 180 (1957).

    Article  Google Scholar 

  30. A. P. Rutskov, Zhurn. Fiz. Khim. 33, 294 (1959).

    Google Scholar 

  31. J. L. Neal and D. A. I. Goring, J. Phys. Chem. 74, 658 (1970).

    Article  Google Scholar 

  32. M. Sakurai, T. Komatsu, and T. Nakagawa, J. Solution Chem. 4, 511 (1975).

    Article  Google Scholar 

  33. K. G. Liphard, A. Jost, and G. M. Schneider, J. Phys. Chem. 81, 547 (1977).

    Article  Google Scholar 

  34. A. Apelblat and E. Manzurola, J. Mol. Liq., 118, 77 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonit Sambira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orekhova, Z., Sambira, Y., Manzurola, E. et al. Electrical Conductance and Volumetric Studies in Aqueous Solutions of DL-Pyroglutamic Acid. J Solution Chem 34, 853–867 (2005). https://doi.org/10.1007/s10953-005-5121-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-5121-x

Keywords

Navigation