Skip to main content

Advertisement

Log in

Model based design and analysis of phase II HIV-1 trials

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

This work explores the advantages of a model based drug development (MBDD) approach for the design and analysis of antiretroviral phase II trials. Two different study settings were investigated: (1) a 5-arm placebo-controlled parallel group dose-finding/proof of concept (POC) study and (2) a comparison of investigational drug and competitor. Studies were simulated using a HIV-1 dynamics model in NONMEM. The Monte-Carlo Mapped Power method determined the sample size required for detecting a dose–response relationship and a significant difference in effect compared to the competitor using a MBDD approach. Stochastic simulation and re-estimation were used for evaluation of model parameter precision and bias given different sample sizes. Results were compared to those from an unpaired, two-sided t test and ANOVA (p ≤ 0.05). In all scenarios, the MBDD approach resulted in smaller study sizes and more precisely estimated treatment effect than conventional statistical analysis. Using a MBDD approach, a sample size of 15 patients could be used to show POC and estimate ED50 with a good precision (relative standard error, 25.7 %). A sample size of 10 patients per arm was needed using the MBDD approach for detecting a difference in treatment effect of ≥20 % at 80 % power, a 3.4-fold reduction in sample size compared to a t test. The MBDD approach can be used to achieve more precise dose–response characterization facilitating decision making and dose selection. If necessitated, the sample size needed to reach a desired power can potentially be reduced compared to traditional statistical analyses. This may allow for comparison against competitors already in early clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214. doi:10.1038/nrd3078

    PubMed  CAS  Google Scholar 

  2. Stone JA, Banfield C, Pfister M, Tannenbaum S, Allerheiligen S, Wetherington JD, Krishna R, Grasela DM (2010) Model-based drug development survey finds pharmacometrics impacting decision making in the pharmaceutical industry. J Clin Pharmacol 50:20S–30S. doi:10.1177/0091270010377628

    Article  PubMed  Google Scholar 

  3. Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ, Milligan PA, Corrigan BW, Lockwood PA, Marshall SA, Benincosa LJ, Tensfeldt TG, Parivar K, Amantea M, Glue P, Koide H, Miller R (2007) Model-based drug development. Clin Pharmacol Ther 82:21–32. doi:10.1038/sj.clpt.6100235

    Article  PubMed  CAS  Google Scholar 

  4. Suryawanshi S, Zhang L, Pfister M, Meibohm B (2010) The current role of model-based drug development. Expert Opin Drug Discov 5:311–321. doi:10.1517/17460441003713470

    Article  PubMed  CAS  Google Scholar 

  5. Zhang L, Sinha V, Forgue ST, Callies S, Ni L, Peck R, Allerheiligen SR (2006) Model-based drug development: the road to quantitative pharmacology. J Pharmacokinet Pharmacodyn 33:369–393. doi:10.1007/s10928-006-9010-8

    Article  PubMed  CAS  Google Scholar 

  6. Rosario MC, Jacqmin P, Dorr P, van der Ryst E, Hitchcock C (2005) A pharmacokinetic–pharmacodynamic disease model to predict in vivo antiviral activity of maraviroc. Clin Pharmacol Ther 78:508–519. doi:10.1016/j.clpt.2005.07.010

    Article  PubMed  CAS  Google Scholar 

  7. Rosario MC, Jacqmin P, Dorr P, James I, Jenkins TM, Abel S, van der Ryst E (2008) Population pharmacokinetic/pharmacodynamic analysis of CCR5 receptor occupancy by maraviroc in healthy subjects and HIV-positive patients. Br J Clin Pharmacol 65(Suppl 1):86–94. doi:10.1111/j.1365-2125.2008.03140.x

    Article  PubMed  CAS  Google Scholar 

  8. Rosario MC, Poland B, Sullivan J et al (2006) A pharmacokinetic-pharmacodynamic model to optimize the phase IIa development program of maraviroc. J Acquir Immune Defic Syndr 42:183–191. doi:10.1097/01.qai.0000220021.64115.37

    Article  PubMed  CAS  Google Scholar 

  9. Fang J, Jadhav PR (2012) From in vitro EC50 to in vivo dose-response for antiretrovirals using an HIV disease model. Part I: a framework. J Pharmacokinet Pharmacodyn 39:357–368. doi:10.1007/s10928-012-9255-3

    Article  PubMed  CAS  Google Scholar 

  10. FDA (2002) Guidance for industry guidance for industry: antiretroviral drugs using plasma HIV RNA measurements—clinical considerations for accelerated and traditional approval. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER), Rockville

    Google Scholar 

  11. MEA (2009) Guideline on the clinical development of medicinal products for the treatment of HIV infection. In: EMEA. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003399.pdf. Accessed 8 Aug 2012

  12. Fätkenheuer G, Pozniak AL, Johnson MA, Plettenberg A, Staszewski S, Hoepelman AI, Saag MS, Goebel FD, Rockstroh JK, Dezube BJ, Jenkins TM, Medhurst C, Sullivan JF, Ridgway C, Abel S, James IT, Youle M, van der Ryst E (2005) Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nat Med 11:1170–1172. doi:10.1038/nm1319

    Article  PubMed  Google Scholar 

  13. Goebel F, Yakovlev A, Pozniak AL, Vinogradova E, Boogaerts G, Hoetelmans R, de Béthune MP, Peeters M, Woodfall B (2006) Short-term antiviral activity of TMC278—a novel NNRTI—in treatment-naive HIV-1-infected subjects. AIDS 20:1721–1726. doi:10.1097/01.aids.0000242818.65215.bd

    Article  PubMed  CAS  Google Scholar 

  14. Fätkenheuer G, Staszewski S, Plettenburg A, Hackman F, Layton G, McFadyen L, Davis J, Jenkins TM (2009) Activity, pharmacokinetics and safety of lersivirine (UK-453,061), a next-generation nonnucleoside reverse transcriptase inhibitor, during 7-day monotherapy in HIV-1-infected patients. AIDS 23:2115–2122

    Article  PubMed  Google Scholar 

  15. Moyle G, Boffito M, Stoehr A, Rieger A, Shen Z, Manhard K, Sheedy B, Hingorani V, Raney A, Nguyen M, Nguyen T, Ong V, Yeh LT, Quart B (2010) Phase 2a randomized controlled trial of short-term activity, safety, and pharmacokinetics of a novel nonnucleoside reverse transcriptase inhibitor, RDEA806, in HIV-1-positive, antiretroviral-naive subjects. Antimicrob Agents Chemother 54:3170–3178

    Article  PubMed  CAS  Google Scholar 

  16. Min S, Sloan L, DeJesus E, Hawkins T, McCurdy L, Song I, Stroder R, Chen S, Underwood M, Fujiwara T, Piscitelli S, Lalezari J (2011) Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of dolutegravir as 10-day monotherapy in HIV-1-infected adults. AIDS 25:1737–1745

    Article  PubMed  CAS  Google Scholar 

  17. Karlsson KE (2010) Benefits of pharmacometric model-based design and analysis of clinical trials. Acta Universitatis Upsaliensis, Uppsala

    Google Scholar 

  18. Vong C, Bergstrand M, Nyberg J, Karlsson MO (2012) Rapid sample size calculations for a defined likelihood ratio test-based power in mixed-effects models. AAPS J 14:176–186

    Article  PubMed  Google Scholar 

  19. Chan PL, Jacqmin P, Lavielle M, McFadyen L, Weatherley B (2011) The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic–pharmacodynamic–viral dynamics parameters of maraviroc in asymptomatic HIV subjects. J Pharmacokinet Pharmacodyn 38:41–61

    Article  PubMed  Google Scholar 

  20. Röshammar D, Simonsson US, Ekvall H, Flamholc L, Ormaasen V, Vesterbacka J, Wallmark E, Ashton M, Gisslén M (2011) Non-linear mixed effects modeling of antiretroviral drug response after administration of lopinavir, atazanavir and efavirenz containing regimens to treatment-naïve HIV-1 infected patients. J Pharmacokinet Pharmacodyn 38:727–742

    Article  PubMed  Google Scholar 

  21. Fang J, Jadhav PR (2012) From in vitro EC50 to in vivo dose-response for antiretrovirals using an HIV disease model. Part II: application to drug development. J Pharmacokinet Pharmacodyn 39:369–381

    Article  PubMed  CAS  Google Scholar 

  22. Beal S, Sheiner LB, Boeckmann A, Bauer, R J NONMEM users guides (1989-2009). ICON Development Solutions, Ellicott City MD, USA, 2009

  23. Lindbom L, Ribbing J, Jonsson EN (2004) Perl-speaks-NONMEM (PsN)—a Perl module for NONMEM related programming. Comput Methods Programs Biomed 75:85–94. http://psn.sourceforge.net/

    Google Scholar 

  24. Lindbom L, Pihlgren P, Jonsson EN (2005) PsN-toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed 79:241–257. http://psn.sourceforge.net/. doi:10.1016/j.cmpb.2005.04.005

    Google Scholar 

  25. Jonsson EN, Karlsson MO (1998) Xpose—an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs in Biomedicine 58:51–64. http://xpose.sourceforge.net/

  26. Keizer RJ, van Benten M, Beijnen JH, Schellens JH, Huitema AD. (2011) Piraña and PCluster: a modeling environment and cluster infrastructure for NONMEM. Comput Methods Programs Biomed 101:72–79. http://pirana-software.com/

  27. White DB, Walawander CA, Liu DY, Grasela TH (1992) Evaluation of hypothesis testing for comparing two populations using NONMEM analysis. J Pharmacokinet Biopharm 20:295–313

    Article  PubMed  CAS  Google Scholar 

  28. Lee PI (2001) Design and power of a population pharmacokinetic study. Pharm Res 18:75–82

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Daniel Röshammar is a current employee of AstraZeneca. However, this work is not funded by AstraZeneca or any other pharmaceutical company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinko Rekić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rekić, D., Röshammar, D. & Simonsson, U.S.H. Model based design and analysis of phase II HIV-1 trials. J Pharmacokinet Pharmacodyn 40, 487–496 (2013). https://doi.org/10.1007/s10928-013-9324-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-013-9324-2

Keywords

Navigation