Skip to main content

Advertisement

Log in

Model-Based Drug Development: The Road to Quantitative Pharmacology

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

High development costs and low success rates in bringing new medicines to the market demand more efficient and effective approaches. Identified by the FDA as a valuable prognostic tool for fulfilling such a demand, model-based drug development is a mathematical and statistical approach that constructs, validates, and utilizes disease models, drug exposure-response models, and pharmacometric models to facilitate drug development. Quantitative pharmacology is a discipline that learns and confirms the key characteristics of new molecular entities in a quantitative manner, with goal of providing explicit, reproducible, and predictive evidence for optimizing drug development plans and enabling critical decision making. Model-based drug development serves as an integral part of quantitative pharmacology. This work reviews the general concept, basic elements, and evolving role of model-based drug development in quantitative pharmacology. Two case studies are presented to illustrate how the model-based drug development approach can facilitate knowledge management and decision making during drug development. The case studies also highlight the organizational learning that comes through implementation of quantitative pharmacology as a discipline. Finally, the prospects of quantitative pharmacology as an emerging discipline are discussed. Advances in this discipline will require continued collaboration between academia, industry and regulatory agencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. US. Food and Drug Administration. Challenge and opportunity on the critical path to new medical products. http://www.fda.gov/oc/initiatives/criticalpath/whitepaper.html (2004).

  2. Gobburu J.V., Marroum P.J. (2001). Utilization of pharmacokinetic-pharmacodynamic modelling and simulation in regulatory decision-making. Clin. Pharmacokinet. 40:883–892

    Article  PubMed  CAS  Google Scholar 

  3. Sheiner L.B., Steimer J.L. (2000). Pharmacokinetic/pharmacodynamic modeling in drug development. Ann. Rev. Pharmacol. Toxicol. 40:67–95

    Article  CAS  Google Scholar 

  4. Burman C.F., Hamrén B., Olsson P. (2005). Modelling and simulation to improve decision-making in clinical development. Pharm. Stat. 4:47–58

    Article  Google Scholar 

  5. Meibohm B., Derendorf H. (2002). Pharmacokinetic/Pharmacodynamic studies in drug development. J. Pharm. Sci. 91:18–31

    Article  PubMed  CAS  Google Scholar 

  6. Minto C., Schnider T. (1998). Expanding clinical applications of population pharmacodynamic modelling. Br. J. Clin. Pharmacol. 46:321–333

    Article  PubMed  CAS  Google Scholar 

  7. Lesko L.J., Rowland M., Peck C.C., Blaschke T.F. (2000). Optimizing the science of drug development: opportunities for better candidate selection and accelerated evaluation in humans. Pharm. Res. 17:1335–1344

    Article  PubMed  CAS  Google Scholar 

  8. Peck C.C., Barr W.H., Benet L.Z., Collins J., Desjardins R.E., Furst D.E., Harter J.G., Levy G., Ludden T., Rodman J.H. (1994). Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. J. Clin. Pharmacol. 34:111–119

    PubMed  CAS  Google Scholar 

  9. Balant L.P., Gex-Fabry M. (2000). Modelling during drug development. Eur. J. Pharm. Biopharm. 50:13–26

    Article  PubMed  CAS  Google Scholar 

  10. Noble D., Levin K., Scott W. (1999). Biological simulations in drug discovery. Drug Discov. Today 4:10–16

    Article  PubMed  CAS  Google Scholar 

  11. D. R. Stanski. Model-based drug development: a critical path opportunity. http://www.fda.gov/oc/initiatives/criticalpath/stanski/stanski.html (2004).

  12. Chaikin P., Rhodes G.R., Bruno R., Rohatagi S., Natarajan C. (2000). Pharmacokinetics/pharmacodynamics in drug development: an industrial perspective. J. Clin. Pharmacol. 40:1428–1438

    PubMed  CAS  Google Scholar 

  13. Mandema J.W., Hermann D., Wang W., Sheiner T., Milad M., Bakker-Arkewa R., Hartman D. (2005). Model-based development of gemcabene, a new lipid altering agent. The AAPS Journal 7:E513–E522

    Article  PubMed  CAS  Google Scholar 

  14. Blesch K.S., Gieschke R., Tsukamoto Y., Reigner B.G., Burger H.U., Steimer J.L. (2003). Clinical pharmacokinetic/pharmacodynamic and physiologically based pharmacokinetic modeling in new drug development: the capecitabine experience. Invest. New Drugs 21:195–223

    Article  PubMed  CAS  Google Scholar 

  15. Karlsson M.O., Anehall T., Friberg L.E., Henningsson A., Kloft C., Sandstrom M., Xie R. (2005). Pharmacokinetic/pharmacodynamic modelling in oncological drug development. Basic Clin. Pharmacol. Toxicol. 96:206–211

    Article  PubMed  CAS  Google Scholar 

  16. Panetta J.C., Iacono L.C., Adamson P.C., Stewart C.F. (2003). The importance of pharmacokinetic limited sampling models for childhood cancer drug development. Clin. Cancer Res. 9:5068–5077

    PubMed  CAS  Google Scholar 

  17. Andes D. (2003). Pharmacokinetics and pharmacodynamics in the development of antifungal compounds. Curr. Opin. Investig. Drugs 4:991–998

    PubMed  CAS  Google Scholar 

  18. Theil F.P., Guentert T.W., Haddad S., Poulin P. (2003). Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection. Toxicol. Lett. 18:29–49

    Article  Google Scholar 

  19. Saha A.K., Mazumdar J., Kohles S.S. (2004). Prediction of growth factor effects on engineered cartilage composition using deterministic and stochastic modeling. Ann. Biomed. Eng. 32:871–879

    Article  PubMed  Google Scholar 

  20. Bangs A. (2005). Predictive biosimulation and virtual patients in pharmaceutical R and D. Stud. Health. Technol. Inform. 111:37–42

    PubMed  Google Scholar 

  21. Parrott N., Jones H., Paquereau N., Lave T. (2005). Application of full physiological models for pharmaceutical drug candidate selection and extrapolation of pharmacokinetics to man. Basic Clin. Pharmacol. Toxicol. 96:193–199

    Article  PubMed  CAS  Google Scholar 

  22. Sheiner L.B. (1997). Learning vs. confirming in clinical drug development. Clin. Pharmacol. Ther. 61:275–291

    Article  PubMed  CAS  Google Scholar 

  23. Vicini P., Gastonguay M.R., Foster D.M. (2002). Model-based approaches to biomarker discovery and evaluation: a multidisciplinary integrated review. Crit. Rev. Biomed. Eng. 30:379–418

    Article  PubMed  Google Scholar 

  24. N. H. G. Holford, M. Hale, H. C. Ko, J.-L. Steimer, L. B. Sheiner, C. C. Peck. Contributors: P. Bonate, W. R. Gillespie, T. Ludden, D. B. Rubin, D. Stanski (eds). Simulation in drug development: good practice. http://cdds.ucsf.edu/research/sddgpreport.php. (1999).

  25. Kimko H.C., Duffell S.B. (2002). Simulation for Designing Clinical Trials: A Pharmacokinetic–Pharmacodynamic Modeling Perspective. Drugs and the Pharmaceutical Sciences, Vol. 127, Marcel Dekker, New York

    Google Scholar 

  26. Pozniak A., Nelson M.R. (1996). Against the proposition: all patients with advanced HIV disease should be offered rifabutin prophylaxis. Genitourin. Med. 72:269–271

    PubMed  CAS  Google Scholar 

  27. Post T.M., Freijer J.I., de Jongh J., Danhof M. (2005). Disease system analysis: basic disease progression models in degenerative disease. Pharm. Res. 22:1038–1049

    Article  PubMed  CAS  Google Scholar 

  28. Minto C., Schnider T. (1998). Expanding clinical applications of population pharmacodynamic modelling. Br. J. Clin. Pharmacol. 46(3):21–333

    Google Scholar 

  29. S. Allerheiligen. Quantitative pharmacology: utilizing PK/PD in drug discovery and development. Population Approach Group in Europe 14th Annual Meeting, Pamplona, Spain (2005).

  30. J. Y. Chien, S. Friedrich, M. A. Heathman, D. P. de Alwis, and V. Sinha. Pharmacokinetics/pharmacodynamics and the stages of drug development: role of modeling and simulation Pharm Res, in press.

  31. Zinzani P.L., Baliva G., Magagnoli M., Bendandi M., Modugno G., Gherlinzoni F., Orcioni G.F., Ascani S., Simoni R., Pileri S.A., Tura S. (2000). Gemcitabine treatment in pretreated cutaneous T-cell lymphoma: experience in 44 patients. J. Clin. Oncol. 18:2603–2606

    PubMed  CAS  Google Scholar 

  32. Grunewald R., Kantarjian H., Du M., Faucher K., Tarassoff P., Plunkett W. (1992). Gemcitabine in leukemia: a phase I clinical, plasma, and cellular pharmacology study. J. Clin. Oncol. 10:406–413

    PubMed  CAS  Google Scholar 

  33. US. Food and Drug Administration Oncology Tools Product Label Details for Prescribing gemcitabine http://www.accessdata.fda.gov/scripts/cder/onctools/prescribe.cfm?GN=gemcitabine. (1998).

  34. Eckel F., Schmelz R., Erdmann J., Mayr M., Lersch C. (2003). Phase II trial of a 24-hour infusion of gemcitabine in previously untreated patients with advanced pancreatic adenocarcinoma. Cancer Invest. 21:690–694

    Article  PubMed  CAS  Google Scholar 

  35. Beal S.L., Sheiner L.B. NONMEM Users Guides. Globomax Inc., Maryland, 1989–1998.

  36. Wahlby U., Jonsson E.N., Karlsson M.O. (2002). Comparison of stepwise covariate model building strategies in population pharmacokinetic-pharmacodynamic analysis. AAPS Pharm. Sci. 4:E27

    Article  Google Scholar 

  37. Kuenen B.C., Rosen L., Smit E.F., Parson M.R., Levi M., Ruijter R., Huisman H., Kedde M.A., Noordhuis P., van der Vijgh W.J., Peters G.J., Cropp G.F., Scigalla P., Hoekman K., Pinedo H.M., Giaccone G. (2002). Dose-finding and pharmacokinetic study of cisplatin, gemcitabine, and SU5416 in patients with solid tumors. J. Clin. Oncol. 20:1657–1667

    Article  PubMed  CAS  Google Scholar 

  38. Gandhi V., Plunkett W., Du M., Ayres M., Estey E.H. (2002). Prolonged infusion of gemcitabine: clinical and pharmacodynamic studies during a phase I trial in relapsed acute myelogenous leukemia. J. Clin. Oncol. 20:665–673

    Article  PubMed  CAS  Google Scholar 

  39. Grunewald R., Abbruzzese J.L., Tarassoff P., Plunkett W. (1991). Saturation of 2′,2′-difluorodeoxycytidine 5′-triphosphate accumulation by mononuclear cells during a phase I trial of gemcitabine. Cancer Chemother. Pharmacol. 27:258–262

    Article  PubMed  CAS  Google Scholar 

  40. van Moorsel C.J., Kroep J.R., Pinedo H.M., Veerman G., Voorn D.A., Postmus P.E., Vermorken J.B., van Groeningen C.J., van der Vijgh W.J., Peters G.J. (1999). Pharmacokinetic schedule finding study of the combination of gemcitabine and cisplatin in patients with solid tumors. Ann. Oncol. 10:441–448

    Article  PubMed  Google Scholar 

  41. M. Heathman and S. Allerheiligen. Visualization case study: population pharmacokinetics of clinical trial data. In Visualization: Using computer graphics to explore data and present information, Wiley, New York, 1995, pp. 155–158.

  42. Jonsson E.N., Karlsson M.O. (1999). Xpose–an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput. Methods Programs Biomed 58:51–64

    Article  PubMed  CAS  Google Scholar 

  43. Delmas P.D., Ensrud K.E., Adachi J.D., Harper K.D., Sarkar S., Gennari C., Reginster J.Y., Pols H.A., Recker R.R., Harris S.T., Wu W., Genant H.K., Black D.M., Eastell R. (2002). Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J. Clin. Endocrinol. Metab. 87:3609–3617

    Article  PubMed  CAS  Google Scholar 

  44. Sarkar S., Mitlak B.H., Wong M., Stock J.L., Black D.M., Harper K.D. (2002). Relationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy. J Bone Miner. Res. 17:1–10

    Article  PubMed  CAS  Google Scholar 

  45. Bjarnason N.H., Sarkar S., Duong T., Mitlak B., Delmas P.D., Christiansen C. (2001). Six and twelve month changes in bone turnover are related to reduction in vertebral fracture risk during 3 years of raloxifene treatment in postmenopausal osteoporosis. Osteoporos. Int. 12:922–930

    Article  PubMed  CAS  Google Scholar 

  46. Chan P.L.S., Holford N.H.G. (2001). Drug Treatment effects on disease progression. Ann. Rev. Pharmacol. Tox. 41:625–659

    Article  CAS  Google Scholar 

  47. de Boor C. (1978). A Practical Guide to Splines. Springer, New York

    Google Scholar 

  48. Jusko W.J., Ko H.C. (1994). Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin. Pharmacol. Ther. 56:406–419

    Article  PubMed  CAS  Google Scholar 

  49. Krzyzanski W., Jusko W.J. (1998). Mathematical formalism and characteristics of four basic models of indirect pharmacodynamic responses for drug infusions. J. Pharmacokinet. Biopharm. 26: 385–408

    Article  PubMed  CAS  Google Scholar 

  50. N. H. G. Holford, D. H. Mould, and C. Peck. Disease progress models In Principles of Clinical Pharmacology, A. J. Atkinson, et al. (ed), Academic Press, San Diego, 2001.

  51. Yano Y., Beal S.L., Sheiner L.B. (2001). Evaluating pharmacokinetic/ pharmacodynamic models using the posterior predictive check. J. Pharmacokinet. Pharmacodyn 28:171–192

    Article  PubMed  CAS  Google Scholar 

  52. AAMC and US. Food and Drug Administration. Drug Development Science: Obstacles and Opportunities for Collaboration Among Academia, Industry and Government. https://services.aamc.org/Publications/index.cfm?fuseaction=Product.displayForm& prd_id=135&prv_id=157. (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra R. B. Allerheiligen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Sinha, V., Forgue, S.T. et al. Model-Based Drug Development: The Road to Quantitative Pharmacology. J Pharmacokinet Pharmacodyn 33, 369–393 (2006). https://doi.org/10.1007/s10928-006-9010-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-006-9010-8

Keywords

Navigation