Skip to main content
Log in

Extrapolated Multirate Methods for Differential Equations with Multiple Time Scales

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we construct extrapolated multirate discretization methods that allows one to efficiently solve problems that have components with different dynamics. This approach is suited for the time integration of multiscale ordinary and partial differential equations and provides highly accurate discretizations. We analyze the linear stability properties of the multirate explicit and linearly implicit extrapolated methods. Numerical results with multiscale ODEs illustrate the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aitken, A.: On interpolation by iteration of proportional parts without the use of differences. Proc. Edinb. Math. Soc. 3, 56–76 (1932)

    Article  Google Scholar 

  2. Bartel, A., Günther, M.: A multirate W-method for electrical networks in state-space formulation. J. Comput. Appl. Math. 147, 411–425 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burrage, K.: Parallel and Sequential Methods for Ordinary Differential Equations. Oxford University Press, London (1995)

    MATH  Google Scholar 

  4. Constantinescu, E., Sandu, A.: Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comput. 33, 239–278 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Constantinescu, E., Sandu, A.: Extrapolated implicit-explicit time stepping. SIAM J. Sci. Comput. 31, 4452–4477 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantinescu, E., Sandu, A.: On extrapolated multirate methods. In: Bock, H.-G., Hoog, F., Friedman, A., Gupta, A., Neunzert, H., Pulleyblank, W.R., Rusten, T., Santosa, F., Tornberg, A.-K., Capasso, V., Mattheij, R., Neunzert, H., Scherzer, O., Fitt, A.D., Norbury, J., Ockendon, H., Wilson, E. (eds.) Progress in Industrial Mathematics at ECMI 2008. Mathematics in Industry, vol. 15, pp. 341–347. Springer, Berlin (2010). doi:10.1007/978-3-642-12110-4_52

    Chapter  Google Scholar 

  7. Constantinescu, E., Sandu, A., Carmichael, G.: Modeling atmospheric chemistry and transport with dynamic adaptive resolution. Comput. Geosci. 12, 133–151 (2008)

    Article  MATH  Google Scholar 

  8. Dawson, C., Kirby, R.: High resolution schemes for conservation laws with locally varying time steps. SIAM J. Sci. Comput. 22, 2256–2281 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deuflhard, P.: Order and stepsize control in extrapolation methods. Numer. Math. 41, 399–422 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deuflhard, P.: Recent progress in extrapolation methods for ordinary differential equations. SIAM Rev. 27, 505–535 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deuflhard, P., Hairer, E., Zugck, J.: One-step and extrapolation methods for differential-algebraic systems. Numer. Math. 51, 501–516 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Engstler, C., Lubich, C.: Multirate extrapolation methods for differential equations with different time scales. Computing 58, 173–185 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gasca, M., Sauer, T.: Polynomial interpolation in several variables. Adv. Comput. Math. 12, 377–410 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gear, C., Wells, D.: Multirate linear multistep methods. BIT 24, 484–502 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gragg, W., Stetter, H.: Generalized multistep predictor-corrector methods. J. ACM 11, 188–209 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Günther, M., Kværnø, A., Rentrop, P.: Multirate partitioned Runge-Kutta methods. BIT 41, 504–514 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Günther, M., Rentrop, P.: Multirate ROW-methods and latency of electric circuits. Appl. Numer. Math. 13, 83–102 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (1993)

    MATH  Google Scholar 

  19. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin (1993)

    Google Scholar 

  20. Hundsdorfer, W., Savcenco, V.: Analysis of a multirate theta-method for stiff ODEs. Appl. Numer. Math. 59, 693–706 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kirby, R.: On the convergence of high resolution methods with multiple time scales for hyperbolic conservation laws. Math. Comput. 72, 1239–1250 (2002)

    Article  MathSciNet  Google Scholar 

  22. Kværnø, A.: Stability of multirate Runge-Kutta schemes. Int. J. Differ. Equ. Appl. 1, 97–105 (2000)

    MathSciNet  Google Scholar 

  23. Kværnø, A., Rentrop, P.: Low order multirate Runge-Kutta methods in electric circuit simulation. Preprint no. 99/1, IWRMM, University of Karlsruhe (1999)

  24. Neville, E.: Iterative interpolation. J. Indian Math. Soc. 20, 87–120 (1934)

    Google Scholar 

  25. Prothero, A., Robinson, A.: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comput. 28, 145–162 (1974)

    Article  MathSciNet  Google Scholar 

  26. Rauber, T., Rünger, G.: Load balancing schemes for extrapolation methods. Concurr. Comput., Pract. Exp. 9, 181–202 (1997)

    Article  Google Scholar 

  27. Rice, J.: Split Runge-Kutta methods for simultaneous equations. J. Res. Natl. Inst. Stand. Technol. 64, 151–170 (1960)

    MathSciNet  MATH  Google Scholar 

  28. Sandu, A., Constantinescu, E.: Multirate explicit Adams methods for time integration of conservation laws. J. Sci. Comput. 38, 229–249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Savcenco, V.: Multirate numerical integration for ordinary differential equations. PhD thesis, Universiteit van Amsterdam (2008)

  30. Savcenco, V., Hundsdorfer, W., Verwer, J.: A multirate time stepping strategy for parabolic PDE. Tech. report MAS-E0516, Centrum voor Wiskundeen Informatica (2005)

  31. Savcenco, V., Hundsdorfer, W., Verwer, J.: A multirate time stepping strategy for stiff ODEs. BIT 47, 137–155 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schlegel, M., Knoth, O., Arnold, M., Wolke, R.: Multirate Runge-Kutta schemes for advection equations. J. Comput. Appl. Math. 226, 345–357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Skelboe, S.: Stability properties of backward differentiation multirate formulas. Appl. Numer. Math. 5, 151–160 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tang, H.-Z., Warnecke, G.: A class of high resolution schemes for hyperbolic conservation laws and convection-diffusion equations with varying time and space grids. J. Comput. Math. 24, 121–140 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their constructive critique and suggestions, which made this into a better paper. We also thank Valeriu Savcenco for his help with the results reported in [31].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil M. Constantinescu.

Additional information

Emil Constantinescu was supported in part by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357, and by the National Science Foundation through award NSF CCF-0515170. The work of Adrian Sandu was supported in part by NSF through the awards NSF CCF-0515170, NSF OCI-0904397, NSF CCF-0916493, and NSF DMS-0915047.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constantinescu, E.M., Sandu, A. Extrapolated Multirate Methods for Differential Equations with Multiple Time Scales. J Sci Comput 56, 28–44 (2013). https://doi.org/10.1007/s10915-012-9662-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9662-z

Keywords

Navigation