Skip to main content
Log in

Intervalley Scattering of Hot Electrons in Germanium at Millikelvin Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A method is presented to determine the field dependence of the intervalley scattering rate for hot electrons in germanium, based on an analysis of electron straggle in a detector crystal fitted with segmented electrodes. Measurements in high-purity and in lightly doped n- and p-type crystals at millikelvin temperatures demonstrate the dominant role of impurity scattering at low field (\(<\sim \)a few V/cm), whereas phonon scattering takes precedence at higher field intensities. An analysis of the experimental data by reference to past investigations of the acoustoelectric effect in germanium strongly suggests that the impurities involved are the dopant species in the neutral state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. D\(^{-}\) and A\(^{+}\) are the analogues for donors and acceptors of negatively charged (H\(^{-})\) atomic hydrogen, with a binding energy for the additional electron (for D\(^{-})\) or hole (for A\(^{+})\) of a fraction of a meV only [24]. The rôle of the A\(^{+}\) and D\(^{-}\) centers in low temperature recombination in Ge and Si under interband carrier generation was demonstrated long ago by lifetime measurements for electrons and holes under cyclotron resonance conditions [25].

References

  1. W. Sasaki, M. Shibuya, K. Mizuguchi, J. Phys. Soc. Jpn. 13, 456 (1958)

    Article  ADS  Google Scholar 

  2. E.M. Conwell, High field transport in semiconductors, in Solid state physics suppl. 9, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1967)

    Google Scholar 

  3. T. Shutt et al., Phys. Rev. Lett. 69, 3531 (1992)

    Article  ADS  Google Scholar 

  4. A. Broniatowski et al., Phys. Lett. B 681, 305 (2009)

    Article  ADS  Google Scholar 

  5. S. Marnieros et al., Proc. 13th Int. Workshop on Low Temperature Detectors, Stanford, USA, 2009. AIP Conf. Proc. 1185, 635 (2009)

  6. E. Olivieri et al., J. Low Temp. Phys. 167, 1137 (2012)

    Article  ADS  Google Scholar 

  7. G. Weinreich, T.M. Sanders, H.G. White, Phys. Rev. 114, 33 (1959)

    Article  ADS  Google Scholar 

  8. E. Olivieri et al., Proc. 13th Int. Workshop on Low Temperature Detectors, Stanford, USA, 2009. AIP Conf. Proc. 1185, 310 (2009)

  9. J. Domange et al., Proc. 13th Int. Workshop on Low Temperature Detectors, Stanford, USA, 2009. AIP Conf. Proc. 1185, 314 (2009)

  10. A. Broniatowski et al., in this Special Issue LTD15 in J. Low Temp. Phys.

  11. M.I. Nathan, Phys. Rev. 130, 2201 (1963)

    Article  ADS  Google Scholar 

  12. C. Herring, E. Vogt, Phys. Rev. 101, 944 (1956)

    Article  MATH  ADS  Google Scholar 

  13. M.C. Piro et al., in this Special Issue LTD15 in J. Low Temp. Phys.

  14. N.A. Zakhlenyuk, V.V. Mitin, Sov. Phys. Semicond. 21, 384 (1986)

    Google Scholar 

  15. K. Seeger, Semiconductor physics, 6th edn. (Springer, Berlin, 1997)

    Book  MATH  Google Scholar 

  16. R.A. Laff, H.Y. Fan, Phys. Rev. 112, 317 (1958)

    Article  ADS  Google Scholar 

  17. S. Ramo, Proc. IRE 27, 584 (1939)

    Article  Google Scholar 

  18. L. Reggiani et al., Phys. Rev. B 16, 2781 (1977)

    Article  ADS  Google Scholar 

  19. V. Aubry-Fortuna, P. Dollfus, private communication (2010)

  20. E.E. Haller, W.L. Hansen, F.S. Goulding, Adv. Phys. 30, 93 (1981)

    Article  ADS  Google Scholar 

  21. C. Clayes, E. Simoen (eds) Germanium-based technologies: from materials to devices, (Elzevier, Amsterdam, 2007)

  22. P. Clauws, private communication (2012)

  23. A. Blondeel, P. Clauws, J. Appl. Phys. 86, 940 (1999)

    Article  ADS  Google Scholar 

  24. E.M. Gershenzon et al., Sov. Phys. Usp. 23, 684 (1980)

    Article  ADS  Google Scholar 

  25. E.M. Gershenzon, Y.P. Ladyzhinskii, A.P. Melnikov, JETP Lett. 14, 256 (1971)

    ADS  Google Scholar 

  26. E.M. Gershenzon, Y.P. Ladyzhinskii, A.P. Melnikov, Sov. Phys. Semicond. 7, 746 (1973)

    Google Scholar 

  27. V.N. Abakumov, V.I. Perel, I.N. Yassievich, Nonradiative recombination in semiconductors, (North-Holland, Oxford, 1991) and references therein

  28. J. Domange et al., J. Low Temp. Phys. 167, 1131 (2012)

    Article  ADS  Google Scholar 

  29. V. Aubry-Fortuna, P. Dollfus, J. Appl. Phys. 108, 123706 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I am indebted to the members of the cryogenic detector group at CSNSM and to J. Domange, E. Olivieri and M.C. Piro especially, for their contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Broniatowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broniatowski, A. Intervalley Scattering of Hot Electrons in Germanium at Millikelvin Temperatures. J Low Temp Phys 176, 860–869 (2014). https://doi.org/10.1007/s10909-014-1091-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1091-y

Keywords

Navigation