Skip to main content
Log in

Structurally Characterized Zn2+ Selective Ratiometric Fluorescence Probe in 100 % Water for HeLa Cell Imaging: Experimental and Computational Studies

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescence recognition of Zn2+ in 100 % aqueous medium using 2-((1, 3 dihydroxy-2-(hydroxymethyl)propan-2 ylimino) methyl) phenol (SALTM) as ratiometric probe is reported. Moreover, SALTM can discriminate Zn2+ from Cd2+ very effectively. The binding constant and detection limit of the probe for Zn2+ is 2.2 × 104 M-1/2 and 2.79 × 10−8 M respectively. Interestingly, corresponding naphthalene derivative (HNTM) having less water solubility fails to be a ratiometric sensor. SALTM can detect intracellular Zn2+ in HeLa cervical cancer cells under fluorescence microscope. Moreover, DFT and TD-DFT studies support experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  PubMed  CAS  Google Scholar 

  2. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  PubMed  CAS  Google Scholar 

  3. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science, Mill Valley

    Google Scholar 

  4. Berg JM, Shi Y (1996) Galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085

    Article  PubMed  CAS  Google Scholar 

  5. Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biol Met 14:271–313

    CAS  Google Scholar 

  6. Wu ZK, Zhang YF, Ma JS, Yang GQ (2006) Ratiometric Zn2+ sensor and strategy for Hg2+ selective recognition by central metal ion replacement. Inorg Chem 45:3140–3142

    Article  PubMed  CAS  Google Scholar 

  7. Assaf SY, Chung SH (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308:734–736

    Article  PubMed  CAS  Google Scholar 

  8. Howell GA, Welch MG, Frederickson CJ (1984) Stimulation-induced uptake and release of zinc in hippocampalslices. Nature 308:736–738

    Article  PubMed  CAS  Google Scholar 

  9. O’Halloran TV (1993) Transition metals in control of gene expression. Science 261:715–725

    Article  PubMed  Google Scholar 

  10. Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016

    Article  PubMed  CAS  Google Scholar 

  11. Suh SW, Jensen KB, Jensen MS, Silva DS, Kesslak PJ, Danscher G, Frederickson CJ (2000) Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer’s diseased brains. Brain Res 2000(852):274–278

    Article  Google Scholar 

  12. Frederickson CJ, Bush AI (2003) Synaptically released zinc: physiological functions and pathological effects. BioMetals 14:353–366

    Article  Google Scholar 

  13. Qian WJ, Gee KR, Kennedy RT (2003) Imaging of Zn2+ release from pancreatic beta-cells at the level of single exocytotic events. Anal Chem 75:3468–3475

    Article  PubMed  CAS  Google Scholar 

  14. Tomat E, Lippard SJ (2010) Imaging mobile zinc in biology. Curr Opin Chem Biol 14:225–230

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Lim NC, Freake HC, Brückner C (2005) Illuminating zinc in biological systems. Chem Eur J 11:38–49

    Article  Google Scholar 

  16. Dai Z, Canary JW (2007) Tailoring tripodal ligands for zinc sensing. New J Chem 31:1708

    Article  CAS  Google Scholar 

  17. Xu Z, Yoon J, Spring DR (1996) Fluorescent chemosensors for Zn 2+. Chem Soc Rev 39:1996–2006

    Article  Google Scholar 

  18. Lee HG, Lee JH, Jang SP, Park HM, Kim S, Kim Y, Kim C, Harrison RG (2011) Tetrahedron 67:8073

    Article  CAS  Google Scholar 

  19. Sturgeon RE, Berman SS, Desaulniers A, Russell DS (1979) Determination of iron, manganese, and zinc in seawater by graphite furnace atomic absorption spectrometry. Anal Chem 51:2364–2369

    Article  CAS  Google Scholar 

  20. Tang B, Huang H, Xu K, Tong L, Yang G, Liu X, An L (2006) Highly sensitive and selective near-infrared fluorescent probe for zinc and its application to macrophage cells. Chem Commun 34:3609–3611

    Article  Google Scholar 

  21. Atilgan S, Ozdemir T, Akkaya EU (2008) A sensitive and selective ratiometric near IR fluorescent probe for zinc ions based on the distyryl − bodipy fluorophore. Org Lett 10:4065–4067

    Article  PubMed  CAS  Google Scholar 

  22. Han ZX, Zhang XB, Li Z, Gong YJ, Wu XY, Jin Z, He CM, Jian LX, Zhang J, Shen GL, Yu RQ (2010) Efficient fluorescence resonance energy transfer-based ratiometric fluorescent cellular imaging probe for Zn2+ using a rhodaminespirolactam as a trigger. Anal Chem 82:3108–3113

    Article  PubMed  CAS  Google Scholar 

  23. Xu Y, Pang Y (2010) Zinc binding-induced near-IR emission from excited-state intramolecular proton transfer of abis(benzoxazole) derivative. Chem Commun 46:4070–4072

    Article  CAS  Google Scholar 

  24. Zhu J, Yuan H, Chan W, Lee AWM (2010) A colorimetric and fluorescent turn-on chemosensor operative in aqueous media for Zn2+ based on a multi-functionalized spirobenzopyran derivative. Org Biomol Chem 8:3957–3964

    Article  PubMed  CAS  Google Scholar 

  25. Zhang Y, Guo XF, Si WX, Jia JH, Qian XH (2008) Ratiometric and water-soluble fluorescent zinc sensor of carboxamidoquinoline with an alkoxyethylamino chain as receptor. Org Lett 2008(10):473–476

    Article  Google Scholar 

  26. Ajayaghosh A, Carol P, Sreejith S (2005) A ratiometric fluorescence probe for selective visual sensing of Zn2+. J Am Chem Soc 127:14962–14963

    Article  PubMed  CAS  Google Scholar 

  27. Akkaya EU, Huston ME, Czarnik AW (1990) Chelation-enhanced fluorescence of anthrylazamacrocycle conjugate probes in aqueous solution. J Am Chem Soc 112:3590–3593

    Article  CAS  Google Scholar 

  28. Burdette SC, Frederickson CJ, Bu W, Lippard SJ (2003) ZP4, an improved neuronal Zn2+ sensor of the Zinpyr family. J Am Chem Soc 125:1778–1787

    Article  PubMed  CAS  Google Scholar 

  29. Ding Y, Xie Y, Li X, Hill JP, Zhang W, Zhu W (2011) Selective and sensitive “turn-on” fluorescent Zn2+ sensors based on di- and tripyrrins with readily modulated emission wavelengths. Chem Commun 47:5431–5433

    Article  CAS  Google Scholar 

  30. Maity D, Govindaraju T (2012) A differentially selective sensor with fluorescence turn-on response to Zn2+ and dual-mode ratiometric response to Al3+ in aqueous media. Chem Commun 48:1039–1041

    Article  CAS  Google Scholar 

  31. Xu Z, Liu X, Pan J, Spring DR (2012) Coumarin-derived transformable fluorescent sensor for Zn2+. Chem Commun 48:4764–4766

    Article  CAS  Google Scholar 

  32. Jiang J, Jiang H, Tang X, Yang L, Dou W, Liu W, Fang R, Liu W (2011) An efficient sensor for Zn2+ and Cu2+ based on different binding modes. Dalton Trans 40:6367–6370

    Article  PubMed  CAS  Google Scholar 

  33. Xu Z, Yoon J, Spring DR (2010) Fluorescent chemosensors for Zn2+. Chem Soc Rev 39:1996–2006

    Article  PubMed  CAS  Google Scholar 

  34. Xu Y, Meng J, Meng L, Dong Y, Cheng Y, Zhu C (2010) A highly selective fluorescence-based polymer sensor incorporating an (R,R)-salen moiety for Zn2+ detection. Chem Eur J 16:12898

    Article  PubMed  CAS  Google Scholar 

  35. Liu X, Zhang N, Zhou J, Chang T, Fang C, Shangguan D (2013) A turn-on fluorescent sensor for zinc and cadmium ions based on perylene tetracarboxylic diimide. Analyst 138:901–906

    Article  PubMed  CAS  Google Scholar 

  36. Mikata Y, Yamashita A, Kawata K, Konno H, Itami S, Yasuda K, Tamotsu S (2012) Hydrogen liberation from the hydrolytic dehydrogenation of dimethylamine–borane at room temperature by using a novel ruthenium nano-catalyst. Dalton Trans 41:4976–4984

    Article  Google Scholar 

  37. Parkesh R, Lee TC, Gunnlaugsson T (2007) Highly selective 4-amino-1,8-naphthalimide based fluorescent photo-induced electron transfer(PET) chemosensors for Zn(II) under physiological pH conditions. Org Biomol Chem 5:310–317

    Article  PubMed  CAS  Google Scholar 

  38. Wang L, Qin W, Liu W (2010) Synthesis, characterization and crystal structure of a new fluorescent probe based on Schiff Base for the detection of Zinc (II). Inorg Chem Commun 13:1122

    Article  CAS  Google Scholar 

  39. Udhayakumari D, Saravanamoorthy S, Ashok M, Velmathi S (2011) Simple imine linked colorimetric and fluorescent receptor for sensing Zn2+ ions in aqueous medium based on inhibition of ESIPT mechanism. Tetrahedron Lett 52:4631–4635

    Article  CAS  Google Scholar 

  40. Dong Y, Li J, Jiang X, Song F, Cheng Y, Zhu C (2011) Na+ triggered fluorescence sensors for Mg2+ detection based on a coumarin salen moiety. Org Lett 13:2252–2255

    Article  PubMed  CAS  Google Scholar 

  41. Cozzi PG (2004) Metal–Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33:410–421

    Article  PubMed  CAS  Google Scholar 

  42. Pucci D, Aiello I, Bellusci A, Crispini A, Ghedini M, Deda ML (2009) Coordination induction of nonlinear molecular shape in mesomorphic and luminescent ZnII complexes based on salen-like frameworks. Eur J Inorg Chem 28:4274–4281

    Article  Google Scholar 

  43. Niu LY, Guan YS, Chen YZ, Wu LZ, Tung CH, Yang QZ (2012) BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine. J Am Chem Soc 134:18928–18931

    Article  PubMed  CAS  Google Scholar 

  44. Das P, Mandal AK, Chandar AB, Baidya M, Bhatt HB, Ganguly B, Ghosh SK, Das A (2012) New chemo-dosimetric reagents as ratiometric probes for cysteine and homocysteine and possible detection in living cells and in blood plasma. Chem Eur J 18:15382–15393

    Article  PubMed  CAS  Google Scholar 

  45. Lin HY, Cheng PY, Wan CF, Wu AT (2012) A turn-on and reversible fluorescence sensor for zinc ion. Analyst 137:4415–4417

    Article  PubMed  CAS  Google Scholar 

  46. Ashton TD, Jolliffe KA, Pfeffer FM (2015) Luminescent probes for the bioimaging of small anionic species in vitro and in vivo. Chem Soc Rev 44:4547–4595

    Article  PubMed  CAS  Google Scholar 

  47. Woo H, You Y, Kim T, Jhon GJ, Nam W (2012) Fluorescence ratiometric zinc sensors based on controlled energy transfer. J Mater Chem 22:17100–17112

    Article  CAS  Google Scholar 

  48. Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, Caro LD, Giacovazzo C, Polidori G, Spagna R (2005) SIR 2004: an improved tool for crystal structure determination and refinement. J Appl Crystallogr 38:381–388

    Article  CAS  Google Scholar 

  49. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A 64:112–122

    Article  CAS  Google Scholar 

  50. Banerjee A, Sahana A, Lohar S, Sarkar B, Mukhopadhyay SK, Das D (2013) A FRET operated sensor for intracellular pH mapping: strategically improved efficiency on moving from an anthracene to a naphthalene derivative. RSC Adv 3:14397–14405

    Article  CAS  Google Scholar 

  51. Austin E, Gouterman M (1978) Absorption and emission of weak complexes with acids, bases, and salts. Bioinorg Chem 9:281–298

    Article  CAS  Google Scholar 

  52. Melhuish WH (1961) Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute. J Phys Chem 65:229–235

    Article  CAS  Google Scholar 

  53. Reja SI, Bhalla V, Sharma A, Kaur G, Kumar M (2014) A highly selective fluorescent probe for hypochlorite and its endogenous imaging in living cells. Chem Commun 50:11911–11914

    Article  CAS  Google Scholar 

  54. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B. Kumari and S. Lohar are thankful to BU and CSIR for fellowship. Assistance from CAS (UGC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Das.

Additional information

CCDC numbers of SALTM and HNTM are 992217 and 993440 respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, B., Lohar, S., Ghosh, M. et al. Structurally Characterized Zn2+ Selective Ratiometric Fluorescence Probe in 100 % Water for HeLa Cell Imaging: Experimental and Computational Studies. J Fluoresc 26, 87–103 (2016). https://doi.org/10.1007/s10895-015-1688-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1688-9

Keywords

Navigation