Skip to main content
Log in

Study of Protein–Probe Interaction and Protective Action of Surfactant Sodium Dodecyl Sulphate in Urea-Denatured HSA using Charge Transfer Fluorescence Probe Methyl Ester of N,N-Dimethylamino Naphthyl Acrylic Acid

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We have demonstrated that the intramolecular charge transfer (ICT) probe Methyl ester of N,N-dimethylamino naphthyl acrylic acid (MDMANA) serves as an efficient reporter of the proteinous microenvironment of Human Serum Albumin (HSA). This work reports the binding phenomenon of MDMANA with HSA and spectral modulation thereupon. The extent of binding and free energy change for complexation reaction along with efficient fluorescence resonance energy transfer from Trp-214 of HSA to MDMANA indicates strong binding between probe and protein. Fluorescence anisotropy, red edge excitation shift, acrylamide quenching and time resolved measurements corroborate the binding nature of the probe with protein and predicts that the probe molecule is located at the hydrophobic site of the protein HSA. Due to the strong binding ability of MDMANA with HSA, it is successfully utilized for the study of stabilizing action of anionic surfactant Sodium Dodecyl Sulphate to the unfolding and folding of protein with denaturant urea in concentration range 1M to 9M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Peters T Jr (1985) Serum albumin. Adv Protein Chem 37:161 doi:10.1016/S0065-3233(08)60065-0

    Article  PubMed  CAS  Google Scholar 

  2. Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153 doi:10.1016/S0065-3233(08)60640-3

    Article  PubMed  CAS  Google Scholar 

  3. Brown JR (1977) Albumin structure, function and uses. Pergamon, Oxford, p 27

    Google Scholar 

  4. Carter DC, He XM, Munson SH, Twigg PD, Gernert KM, Broom MB et al (1989) Three-dimensional structure of human serum albumin. Science 244:1195 doi:10.1126/science.2727704

    Article  PubMed  CAS  Google Scholar 

  5. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209 doi:10.1038/358209a0

    Article  PubMed  CAS  Google Scholar 

  6. Sudlow G, Birkett DJ, Wade DN (1977) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12:1052

    Google Scholar 

  7. Moreno F, Cortijo M, Gonzalez-Jimenez J (1999) The fluorescent probe prodan characterizes the warfarin binding site on human serum albumin. Photochem Photobiol 69:8

    Article  PubMed  CAS  Google Scholar 

  8. Kumar CV, Buranaprapuk A (1999) Tuning the selectivity of protein photocleavage: spectroscopic and photochemical studies. J Am Chem Soc 121:4262 doi:10.1021/ja9844377

    Article  CAS  Google Scholar 

  9. Reed RG (1977) Nucleus-dependent regulation of tyrosine aminotransferase degradation in hepatoma tissue culture cells. J Biol Chem 252:7483

    PubMed  CAS  Google Scholar 

  10. Jacobsen J, Brodersen R (1983) Location of long chain fatty acid-binding sites of bovine serum albumin by affinity labeling. J Biol Chem 258:6319

    PubMed  CAS  Google Scholar 

  11. Markus G, Karush F (1957) Structural effects of the interaction of human serum albumin with sodium decyl sulfate. J Am Chem Soc 79:3264 doi:10.1021/ja01569a073

    Article  CAS  Google Scholar 

  12. Moryama Y, Sato Y, Takeda K (1993) Reformation of helical structure of bovine serum albumin by the small amount of sodium dodecyl sulphate after the disruption of the structure by urea. J Colloid Interface Sci 156:420 doi:10.1006/jcis.1993.1132

    Article  Google Scholar 

  13. Banerjee A, Basu K, Sengupta PK (2008) Interaction of 7-hydroxyflavone with human serum albumin: a spectroscopic study. J Photochem Photobiol B Chem 90:33

    CAS  Google Scholar 

  14. Mallick A, Haldar B, Chattopadhyay N (2005) Spectroscopic investigation on the interaction of ICT probe 3-Acetyl-4-oxo-6,7-dihydro-12H Indolo-[2,3-a] quinolizine with serum albumins. J Phys Chem B 109:14683 doi:10.1021/jp051367z

    Article  PubMed  CAS  Google Scholar 

  15. Davis DM, Birch DJS (1996) Extrinsic fluorescence probe study of human serum albumin using nile red. J Fluoresc 6:23 doi:10.1007/BF00726723

    Article  CAS  Google Scholar 

  16. Wu F-Y, Ji Z-J, Wu Y-M, Wan X-F (2006) Interaction of ICT receptor with serum albumins in aqueous buffer. Chem Phys Lett 424:387 doi:10.1016/j.cplett.2006.05.019

    Article  CAS  Google Scholar 

  17. Singh RB, Mahanta S, Guchhait N (2008) Study of interaction of proton transfer probe 1-hydroxy 2-naphthaldehyde with serum albumins: spectroscopic study. J Photochem Photobiol B Biol 91:1 doi:10.1016/j.jphotobiol.2007.12.006

    Article  Google Scholar 

  18. Kaldas MI, Walle UK, van der Woude H, McMillan JM, Walle T (2005) Covalent binding of the flavonoid quercetin to human serum albumin. J Agric Food Chem 53:4194 doi:10.1021/jf050061m

    Article  PubMed  CAS  Google Scholar 

  19. Papadopoulou A, Green RJ, Frazier RA (2005) Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. J Agric Food Chem 53:158 doi:10.1021/jf048693g

    Article  PubMed  CAS  Google Scholar 

  20. Sahu K, Mondal SK, Ghosh S, Roy D, Bhattacharyya K (2006) Temperature dependence of solvation dynamics and anisotropy decay in a protein: ANS in bovine serum albumin. J Chem Phys 124:124909 doi:10.1063/1.2178782

    Article  PubMed  Google Scholar 

  21. Buzady A, Savolainen J, Erostyak J, Myllyperkio J, Somogyi B, Korppi-Tommola J (2003) Femtosecond transient absorption study of the dynamics of acrylodan in solution and attached to human serum albumin. J Phys Chem B 107:1208 doi:10.1021/jp027107o

    Article  CAS  Google Scholar 

  22. Amisha Kamal JK, Zhao L, Zewail AH (2004) Ultrafast hydration dynamics in protein unfolding: human serum albumin. Proc Natl Acad Sci U S A 101:13411 doi:10.1073/pnas.0405724101

    Article  Google Scholar 

  23. Mahanta S, Singh RB, Kar S, Guchhait N (2008) Photoinduced intramolecular charge transfer in methyl ester of N, N’-Dimethyl aminonaphthyl-(acrylic)-acid: Spectroscopic measurement and quantum chemical calculations. J Photochem Photobiol Chem A 194:318

    Google Scholar 

  24. Turro NJ, Lei X-G (1995) Spectroscopic probe analysis of protein–surfactant interactions: the BSA/SDS system. Langmuir 11:2525 doi:10.1021/la00007a035

    Article  CAS  Google Scholar 

  25. Das R, Guha D, Mitra S, Kar S, Lahiri S, Mukherjee S (1997) Intramolecular charge transfer as probing reaction: fluorescence monitoring of protein–surfactant interaction. J Phys Chem A 101:4042 doi:10.1021/jp9625669

    Article  CAS  Google Scholar 

  26. Mahanta S, Singh RB, Kar S, Guchhait N (2007) Excited state intramolecular proton transfer in 3-hydroxy-2-naphthaldehyde: a combined study by absorption and emission spectroscopy and quantum chemical calculation. Chem Phys 324:742 doi:10.1016/j.chemphys.2006.01.036

    Article  Google Scholar 

  27. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Plenum, New York

    Google Scholar 

  28. Chakraborty A, Seth D, Setua P, Sarkar N (2006) Photoinduced electron transfer in a protein-surfactant complex: probing the interaction of SDS with BSA. J Phys Chem B 110:16607 doi:10.1021/jp0615860

    Article  PubMed  CAS  Google Scholar 

  29. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703 doi:10.1021/ja01176a030

    Article  CAS  Google Scholar 

  30. Valeur B, Weber G (1977) Anisotropic rotations in 1-naphthylamine. Existence of Red-edge transition moment normal to the ring plane. Chem Phys Lett 45:140 doi:10.1016/0009-2614(77)85229-9

    Article  CAS  Google Scholar 

  31. Weber G, Schinitzky M (1970) Failure of energy transfer between identical aromatic molecules on excitation at the long wave edge of the absorption spectrum. Proc Natl Acad Sci U S A 65:823 doi:10.1073/pnas.65.4.823

    Article  PubMed  CAS  Google Scholar 

  32. Lakowicz JR, Nakamoto SK (1984) Red-edge excitation of fluorescence and dynamic properties of proteins and membranes. Biochemistry 23:3013 doi:10.1021/bi00308a026

    Article  PubMed  CAS  Google Scholar 

  33. Itoh K, Azumi T (1975) Shift of the emission band upon excitation at the long wavelength absorption edge. II. Importance of the solute–solvent interaction and the solvent reorientation relaxation process. J Chem Phys 62:3431 doi:10.1063/1.430977

    Article  CAS  Google Scholar 

  34. Mukherjee S, Chattopadhyay A (1995) Wavelength-selective fluorescence as a novel tool to study organization and dynamics in complex biological systems. J Fluorescence 3:237 doi:10.1007/BF00723895

    Article  Google Scholar 

  35. Struck DK, Hoekstra D, Pagano RE (1981) Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20:4093 doi:10.1021/bi00517a023

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

NG gratefully acknowledges the financial support received from Department of Science and Technology, India (Project No.SR/S1/PC-1/2003). RBS and SM thank CSIR, New Delhi for research fellowship. The authors are thankful to Dr. Nilmoni Sarkar and Mr. Debabrata Seth of Department of Chemistry, IITKGP for fluorescence lifetime measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Guchhait.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahanta, S., Singh, R.B. & Guchhait, N. Study of Protein–Probe Interaction and Protective Action of Surfactant Sodium Dodecyl Sulphate in Urea-Denatured HSA using Charge Transfer Fluorescence Probe Methyl Ester of N,N-Dimethylamino Naphthyl Acrylic Acid. J Fluoresc 19, 291–302 (2009). https://doi.org/10.1007/s10895-008-0415-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0415-1

Keywords

Navigation