Skip to main content

Advertisement

Log in

N-(18-Hydroxylinolenoyl)-l-Glutamine: A Newly Discovered Analog of Volicitin in Manduca sexta and its Elicitor Activity in Plants

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plants attacked by insect herbivores release a blend of volatile organic compounds (VOCs) that serve as chemical cues for host location by parasitic wasps, natural enemies of the herbivores. Volicitin, N-(17-hydroxylinolenoyl)-l-glutamine, is one of the most active VOC elicitors found in herbivore regurgitants. Our previous study revealed that hydroxylation on the 17th position of the linolenic acid moiety of N-linolenoyl-l-glutamine increases by more than three times the elicitor activity in corn plants. Here, we identified N-(18-hydroxylinolenoyl)-l-glutamine (18OH-volicitin) from larval gut contents of tobacco hornworm (THW), Manduca sexta. Eggplant and tobacco, two solanaceous host plants of THW larvae, and corn, a non-host plant, responded differently to this new elicitor. Eggplant and tobacco seedlings emitted twice the amount of VOCs when 18OH-volicitin was applied to damaged leaf surfaces compared to N-linolenoyl-l-glutamine, while both these fatty acid amino acid conjugates (FACs) elicited a similar response in corn seedlings. In both solanaceous plants, there was no significant difference in the elicitor activity of 17OH- and 18OH-volicitin. Interestingly, other lepidopteran species that have 17OH-type volicitin also attack solanaceous plants. These data suggest that plants have developed herbivory-detection systems customized to their herbivorous enemies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboshi T, Yoshinaga N, Noge K, Nishida R, N (2007) Efficient incorporation of unsaturated fatty acids into volicitin-related compounds in Spodoptera litura (Lepidoptera: Noctuidae). Biosci Biotech Bioch 71:607–610. doi. 10.1271/bbb.60546

  • Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949. doi:10.1126/science.276.5314.945

    Article  CAS  Google Scholar 

  • Alborn HT, Brennan MM, Tumlinson JH (2003) Differential activity and degradation of plant volatile elicitors in regurgitant of tobacco hornworm (Manduca sexta) larvae. J Chem Ecol 29:1357–1372. doi:10.1023/A:1024209302628

    Article  CAS  PubMed  Google Scholar 

  • Alborn HT, Hansen TV, Jones TH, Bennett DC, Tumlinson JH, Schmelz EA et al (2007) Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc Natl Acad Sci U S A 104:12976–12981. doi:10.1073/pnas.0705947104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol 125:711–717. doi:10.1104/pp.125.2.711

  • Halloran ST, Mauck KE, Fleisher SJ, Tumlinson JH (2013) Volatiles from intact and Lygus-damaged Erigeron annuus (L.) Pers. are highly attractive to ovipositing Lygus and its parasitoid Peristenus relictus Ruthe. J Chem Ecol 39:1115–1128. doi:10.1007/s10886-013-0331-y

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144. doi:10.1126/science.291.5511.2141

    Article  CAS  PubMed  Google Scholar 

  • Mattiacci L, Dicke M, Posthumus MA (1995) β-Glucosidase: An elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc Natl Acad Sci U S A 92:2036–2040. doi:10.1073/pnas.92.6.2036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mori N, Alborn HT, Teal PEA, Tumlinson JH (2001) Enzymatic decomposition of elicitors of plant volatiles in Heliothis virescens and Helicoverpa zea. J Insect Physiol 47:749–757. doi:10.1016/S0022-1910(00)00171-2

    Article  CAS  PubMed  Google Scholar 

  • Mori N, Yoshinaga N, Sawada Y, Fukui M, Shimoda M, Fujisaki K et al (2003) Identification of volicitin-related compounds from the regurgitant of lepidopteran caterpillars. Biosci Biotech Bioch 67:1168–1171. doi:10.1271/bbb.67.1168

    Article  CAS  Google Scholar 

  • Paré PW, Alborn HT, Tumlinson JH (1998) Concerted biosynthesis of an insect elicitor of plant volatiles. Proc Natl Acad Sci U S A 95:13971–13975. doi:10.1073/pnas.95.23.13971

    Article  PubMed Central  PubMed  Google Scholar 

  • Pohnert G, Jung V, Haukioja E, Lempa K, Boland W (1999a) New fatty acid amides from regurgitant of lepidopteran (Noctuidae, Geometridae) caterpillars. Tetrahedron 55:11275–11280. doi:10.1016/S0040-4020(99)00639-0

    Article  CAS  Google Scholar 

  • Pohnert G, Koch T, Boland W (1999b) Synthesis of volicitin: a novel three-component Wittig approach to chiral 17-hydroxylinolenic acid. Chem Commun 12:1087–1088. doi:10.1039/A902020I

    Article  Google Scholar 

  • Sawada Y, Yoshinaga N, Fujisaki K, Nishida R, Kuwahara Y, Mori N (2006) Absolute configuration of volicitin from the regurgitant of lepidopteran caterpillars and biological activity of volicitin-related compounds. Biosci Biotech Bioch 70:2185–2190. doi:10.1271/bbb.60133

    Article  CAS  Google Scholar 

  • Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS et al (2006) Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci U S A 103:8894–8899. doi:10.1073/pnas.0602328103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT, Tumlinson JH, Teal PEA (2009) Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proc Natl Acad Sci U S A 106:653–657. doi:10.1073/pnas.0811861106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spiteller D, Pohnert G, Boland W (2001) Absolute configuration of volicitin, an elicitor of plant volatile biosynthesis from lepidopteran larvae. Tetrahedron Lett 42: 1483–1485. doi.org/10.1016/S0040-4039(00)02290-5

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253. doi:10.1126/science.250.4985.1251

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga N, Morigaki N, Matsuda F, Nishida R, Mori N (2005) In vitro biosynthesis of volicitin in Spodoptera litura. Insect Biochem Mol Biol 35:175–184. doi:10.1016/j.ibmb.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga N, Aboshi T, Ishikawa C, Fukui M, Shimoda M, Nishida R et al (2007) Fatty acid amides, previously identified in caterpillars, found in the cricket Teleogryllus taiwanemma and fruit fly Drosophila melanogaster larvae. J Chem Ecol 33:1376–1381. doi:10.1007/s10886-007-9321-2

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga N, Aboshi T, Abe H, Nishida R, Alborn HT, Tumlinson JH et al (2008) Active role of fatty acid amino acid conjugates in nitrogen metabolism in Spodoptera litura larvae. Proc Natl Acad Sci U S A 105:18058–18063. doi:10.1073/pnas.0809623105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshinaga N, Alborn HT, Nakanishi T, Suckling DM, Nishida R, Tumlinson JH et al (2010) Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars. J Chem Ecol 36:319–325. doi:10.1007/s10886-010-9764-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by a Grant-in-aid for Scientific Research (nos. 23880014, 22380068 and 24120006) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. NY was the recipient of Postdoctoral Fellowship for Research Abroad (no. 01212) from the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko Yoshinaga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

MS2 spectra of hydroxylinolenoyl-l-glutamine (OH-18:3-Gln) from Manduca sexta (A), Acherontia styx (B) and 17OH-volicitin from Spodoptera litura larval gut contents (C). Larval gut content of wild A. styx was prepared in the same way. (PPTX 106 kb)

Supplemental Fig. 2

GC/MS chromatogram of methyl acetoxylinolenate (M + 1-CH3COOH, m/z 291) derived from (A) 17OH-volicitin purified from Spodoptera litura larval gut contents, (B) 18OH-volicitin from Manduca sexta, and (C) synthesized 18OH-volicitin. (PPTX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshinaga, N., Ishikawa, C., Seidl-Adams, I. et al. N-(18-Hydroxylinolenoyl)-l-Glutamine: A Newly Discovered Analog of Volicitin in Manduca sexta and its Elicitor Activity in Plants. J Chem Ecol 40, 484–490 (2014). https://doi.org/10.1007/s10886-014-0436-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0436-y

Keywords

Navigation