Skip to main content

Advertisement

Log in

Identification of Zinc-ligated Cysteine Residues Based on 13Cα and 13Cβ Chemical Shift Data

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Although a significant number of proteins include bound metals as part of their structure, the identification of amino acid residues coordinated to non-paramagnetic metals by NMR remains a challenge. Metal ligands can stabilize the native structure and/or play critical catalytic roles in the underlying biochemistry. An atom’s chemical shift is exquisitely sensitive to its electronic environment. Chemical shift data can provide valuable insights into structural features, including metal ligation. In this study, we demonstrate that overlapped 13Cβ chemical shift distributions of Zn-ligated and non-metal-ligated cysteine residues are largely resolved by the inclusion of the corresponding 13Cα chemical shift information, together with secondary structural information. We demonstrate this with a bivariate distribution plot, and statistically with a multivariate analysis of variance (MANOVA) and hierarchical logistic regression analysis. Using 287 13Cα/13Cβ shift pairs from 79 proteins with known three-dimensional structures, including 86 13Cα and13Cβ shifts for 43 Zn-ligated cysteine residues, along with corresponding oxidation state and secondary structure information, we have built a logistic regression model that distinguishes between oxidized cystines, reduced (non-metal ligated) cysteines, and Zn-ligated cysteines. Classifying cysteines/cystines with a statisical model incorporating all three phenomena resulted in a predictor of Zn ligation with a recall, precision and F-measure of 83.7%, and an accuracy of 95.1%. This model was applied in the analysis of Bacillus subtilis IscU, a protein involved in iron–sulfur cluster assembly. The model predicts that all three cysteines of IscU are metal ligands. We confirmed these results by (i) examining the effect of metal chelation on the NMR spectrum of IscU, and (ii) inductively coupled plasma mass spectrometry analysis. To gain further insight into the frequency of occurrence of non-cysteine Zn ligands, we analyzed the Protein Data Bank and found that 78% of the Zn ligands are histidine and cysteine (with nearly identical frequencies), and 18% are acidic residues aspartate and glutamate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • T.B. Acton K.C. Gunsalus R. Xiao L.C. Ma J. Aramini M.C. Baran Y.W. Chiang T. Climent B. Cooper N.G. Denissova S.M. Douglas J.K. Everett C.K. Ho D. Macapagal P.K. Rajan R. Shastry L.Y. Shih G.V.T. Swapna M. Wilson M. Wu M. Gerstein M. Inouye J.F. Hunt G.T. Montelione (2005) Meth. Enzymol. 394 210–243 Occurrence Handle10.1016/S0076-6879(05)94008-1

    Article  Google Scholar 

  • J.N. Agar C. Krebs J. Frazzon B.H. Huynh D.R. Dean M.K. Johnson (2000) Biochemistry 39 7856–7862 Occurrence Handle10.1021/bi000931n

    Article  Google Scholar 

  • A. Bateman L. Coin R. Durbin R.D. Finn V. Hollich S. Griffiths-Jones A. Khanna M. Marshall S. Moxon E.L.L. Sonnhammer D.J. Studholme C. Yeats S.R. Eddy (2004) Nucleic Acids Res. 32 138–141 Occurrence Handle10.1093/nar/gkh121

    Article  Google Scholar 

  • A. Becker I. Schlichting W. Kabsch D. Groche S. Schultz A.F. Wagner (1998) Nat. Struct. Biol. 5 1053–1058 Occurrence Handle10.1038/4162

    Article  Google Scholar 

  • J.M. Berg Y. Shi (1996) Science 271 1081–1085 Occurrence Handle1996Sci...271.1081B

    ADS  Google Scholar 

  • M. Clamp D. Andrews D. Barker P. Bevan G. Cameron Y. Chen L. Clark T. Cox J. Cuff V. Curwen T. Down R. Durbin E. Eyras J. Gilbert M. Hammond T. Hubbard A. Kasprzyk D. Keefe H. Lehvaslaiho V. Iyer C. Melsopp E. Mongin R. Pettett S. Potter A. Rust E. Schmidt S. Searle G. Slater J. Smith W. Spooner A. Stabenau J. Stalker E. Stupka A. Ureta-Vidal I. Vastrik E. Birney (2003) Nucleic Acids Res. 31 38–42 Occurrence Handle10.1093/nar/gkg083

    Article  Google Scholar 

  • N.D. Clarke J.M. Berg (1998) Science 282 2018–2022 Occurrence Handle10.1126/science.282.5396.2018 Occurrence Handle1998Sci...282.2018C

    Article  ADS  Google Scholar 

  • T.B. Coplen J.K. Bohlke P. De Bievre T. Ding N.E. Holden J.A. Hopple H.R. Krouse A. Lamberty H.S. Peiser K. Revesz S.E. Rieder K.J.R. Rosman E. Roth P.D.P. Taylor R.D. Vocke Y.K. Xiao (2002) Pure Appl. Chem. 74 1987–2017

    Google Scholar 

  • Z. Dauter K.S. Wilson L.C. Sieker J.M. Moulis J. Meyer (1996) Proc. Natl. Acad. Sci. USA 93 8836–8840 Occurrence Handle10.1073/pnas.93.17.8836 Occurrence Handle1996PNAS...93.8836D

    Article  ADS  Google Scholar 

  • A.C. Drohat K. Kwon D.J. Krosky J.T. Stivers (2002) Nat. Struct. Biol. 9 659–664 Occurrence Handle10.1038/nsb829

    Article  Google Scholar 

  • B.S. Everitt G. Dunn (2001) Applied Multivariate Data Analysis. Arnold London

    Google Scholar 

  • T. Fujii Y. Hata M. Oozeki H. Moriyama T. Wakagi N. Tanaka T. Oshima (1997) Biochemistry 36 1505–1513 Occurrence Handle10.1021/bi961966j

    Article  Google Scholar 

  • J.P. Glusker A.K. Katz C.W. Bock (1999) Rigaku 16 8–16

    Google Scholar 

  • M. Hernick C.A. Fierke (2005) Arch. Biochem. Biophys. 433 71–84 Occurrence Handle10.1016/j.abb.2004.08.006

    Article  Google Scholar 

  • M. Jansson Y.C. Li L. Jendeberg S. Anderson B.T. Montelione B. Nilsson (1996) J. Biomol. NMR 7 131–141 Occurrence Handle10.1007/BF00203823

    Article  Google Scholar 

  • W. Kabsch C. Sander (1983) Biopolymers 22 2577–2637 Occurrence Handle10.1002/bip.360221211

    Article  Google Scholar 

  • Klug, A. and Rhodes, D. (1987) Zinc fingers: a novel protein fold for nucleic acid recognition. Cold Spring Harb. Symp. Quant. Biol 52, 473–482

    Google Scholar 

  • R. Koradi M. Billeter K. Wuthrich (1996) J. Mol. Graph. 14 29–32

    Google Scholar 

  • S.S. Krishna I. Majumdar N.V. Grishin (2003) Nucleic Acids Res. 31 532–550 Occurrence Handle10.1093/nar/gkg161

    Article  Google Scholar 

  • K. Kwon C. Cao J.T. Stivers (2003) J. Biol. Chem. 278 19442–19446 Occurrence Handle10.1074/jbc.M300934200

    Article  Google Scholar 

  • W.N. Lipscomb N. Strater (1996) Chem. Rev. 96 2375–2433 Occurrence Handle10.1021/cr950042j

    Article  Google Scholar 

  • J. Liu N. Oganesyan D.H. Shin J. Jancarik H. Yokota R. Kim S.H. Kim (2005) Proteins 59 875–881 Occurrence Handle10.1002/prot.20421

    Article  Google Scholar 

  • D. Lu M.A. Searles A. Klug (2003) Nature 426 96–100 Occurrence Handle10.1038/nature02088 Occurrence Handle2003Natur.426...96L

    Article  ADS  Google Scholar 

  • R.G. Miller (1997) Beyond ANOVA: Basics of Applied Statistics Chapman & Hall Boca Raton, FL Occurrence Handle0885.62081

    MATH  Google Scholar 

  • H.N. Moseley G. Sahota G.T. Montelione (2004) J. Biomol. NMR 28 341–355 Occurrence Handle10.1023/B:JNMR.0000015420.44364.06

    Article  Google Scholar 

  • A.G. Murzin S.E. Brenner T. Hubbard C. Chothia (1995) J. Mol. Biol. 247 536–540 Occurrence Handle10.1006/jmbi.1995.0159

    Article  Google Scholar 

  • D. Neuhaus G. Wagner M. Vasak J.H. Kagi K. Wuthrich (1984) Eur. J. Biochem. 143 659–667 Occurrence Handle10.1111/j.1432-1033.1984.tb08419.x

    Article  Google Scholar 

  • J.G. Pelton D.A. Torchia N.D. Meadow S. Roseman (1993) Protein Sci. 2 543–558 Occurrence Handle10.1002/pro.5560020406

    Article  Google Scholar 

  • T.A. Ramelot J.R. Cort S. Goldsmith-Fischman G.J. Kornhaber R. Xiao R. Shastry T.B. Acton B. Honig G.T. Montelione M.A. Kennedy (2004) J. Mol. Biol. 344 567–583 Occurrence Handle10.1016/j.jmb.2004.08.038

    Article  Google Scholar 

  • P.A. Rea (2003) Nat. Biotechnol. 21 1149–1151 Occurrence Handle10.1038/nbt1003-1149

    Article  Google Scholar 

  • D. Sharma K. Rajarathnam (2000) J. Biomol. NMR 18 165–171 Occurrence Handle10.1023/A:1008398416292

    Article  Google Scholar 

  • J.R. Taylor (1997) An introduction to Error Analysis: The Study of Uncertainties in Physical Measurements University Science Books Sausalito, CA

    Google Scholar 

  • M. Vasak E. Worgotter G. Wagner J.H. Kagi K. Wuthrich (1987) J. Mol. Biol. 196 711–719 Occurrence Handle10.1016/0022-2836(87)90042-8

    Article  Google Scholar 

  • J.C. Venter M.D. Adams E.W. Myers P.W. Li R.J. Mural G.G. Sutton H.O. Smith M. Yandell C.A. Evans R.A. Holt J.D. Gocayne P. Amanatides R.M. Ballew D.H. Huson J.R. Wortman Q. Zhang C.D. Kodira X.Q.H. Zheng L. Chen M. Skupski et al. (2001) Science 291 1304–1351 Occurrence Handle10.1126/science.1058040 Occurrence Handle2001Sci...291.1304V

    Article  ADS  Google Scholar 

  • H.Y. Zhang S. Neal D.S. Wishart (2003) J. Biomol. NMR 25 173–195 Occurrence Handle10.1023/A:1022836027055

    Article  Google Scholar 

  • L. Zheng V.L. Cash D.H. Flint D.R. Dean (1998) J. Biol. Chem. 273 13264–13272 Occurrence Handle10.1074/jbc.273.21.13264

    Article  Google Scholar 

  • Z.S. Zhou K. Peariso J.E. Penner-Hahn R.G. Matthews (1999) Biochemistry 38 15915–15926 Occurrence Handle10.1021/bi992062b

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano T. Montelione.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornhaber, G.J., Snyder, D., Moseley, H.N.B. et al. Identification of Zinc-ligated Cysteine Residues Based on 13Cα and 13Cβ Chemical Shift Data. J Biomol NMR 34, 259–269 (2006). https://doi.org/10.1007/s10858-006-0027-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-0027-5

Keywords

Navigation