Skip to main content
Log in

High-level production of uniformly 15N-and 13C-enriched fusion proteins in Escherichia coli

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

An approach to produce 13C-and 15N-enriched proteins is described. The concept is based on intracellular production of the recombinant proteins in Escherichia coli as fusions to an IgG-binding domain, Z, derived from staphylococcal protein A. The production method provides yields of 40–200 mg/l of isotope-enriched fusion proteins in defined minimal media. In addition, the Z fusion partner facilitates the first purification step by IgG affinity chromatography. The production system is applied to isotope enrichment of human insulin-like growth factor II (IGF-II), bovine pancreatic trypsin inhibitor (BPTI), and Z itself. High levels of protein production are achieved in shaker flasks using totally defined minimal medium supplemented with 13C6-glucose and (15NH4)2SO4 as the only carbon and nitrogen sources. Growth conditions were optimized to obtain high protein production levels and high levels of isotope incorporation, while minimizing 13C6-glucose usage. Incorporation levels of 13C and/or 15N isotopes in purified IGF-II, BPTI, and Z were confirmed using mass spectrometry and NMR spectroscopy. More than 99% of total isotope enrichment was obtained using a defined isotope-enriched minimal medium. The optimized systems provide reliable, high-level production of isotope-enriched fusion proteins. They can be used to produce 20–40 mg/l of properly folded Z and BPTI proteins. The production system of recombinant BPTI is state-of-the-art and provides the highest known yield of native refolded BPTI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BPTI:

bovine pancreatic trypsin inhibitor

DTT:

dithiothreitol

Gdn-HCl:

guanidinium hydrochloride

IAA:

β-indole acrylic acid

IGF-II:

insulin-like growth factor II

PBS:

phosphate-buffered saline

PDMS:

plasma desorption mass spectrometry

PFPA:

pentafluoro propionic acid

RP-HPLC:

reversed-phase high performance liquid chromatography

Z:

IgG-binding protein domain derived from staphylococcal protein A.

References

  • Abeygunawardana, C., Weber, D.J., Frick, D.N., Bessman, M.J. and Mildvan, A.S. (1993) Biochemistry 32, 13071–13080.

    Google Scholar 

  • Altman, J.D., Henner, D., Nilsson, B., Anderson, S. and Kuntz, I.D. (1991) Protein Eng., 4, 593–600.

    Google Scholar 

  • Archer, S.J., Bax, A., Roberts, A.B., Sporn, M.B., Ogawa, Y., Piez, K.A., Waetherbee, J.A., Tsang, M.L.-S., Lucas, R., Zheng, B.-L., Wenker, J. and Torchia, D.A. (1993) Biochemistry 32, 1152–1163.

    Google Scholar 

  • Balbás, P., Soberón, X., Merino, E., Zurita, M., Lomeli, H., Valle, F., Flores, N. and Bolivar, F. (1986) Gene, 50, 3–40.

    Google Scholar 

  • Boucher, W., Laue, E.D., Campbell-Burk, S.L. and Domaille, P.J. (1992) J. Am. Chem. Soc., 114, 2262–2264.

    Google Scholar 

  • Brutscher, B., Simorre, J.-P., Caffrey, M.S. and Marion, D. (1994) J. Magn. Reson. Ser. B, 105, 77–82.

    Google Scholar 

  • Cedergren, L., Andersson, R., Jansson, B., Uhlen, M. and Nilsson, B. (1993) Protein Eng. 6, 441–448.

    Google Scholar 

  • Clore, G.M., Bax, A., Wingfield, P.T. and Gronenborn, A.M. (1990) Biochemistry, 29, 5671–5676.

    Google Scholar 

  • Clore, G.M. and Gronenborn, A.M. (1991) Science, 252, 1390–1399.

    Google Scholar 

  • Clore, G.M. and Gronenborn, A.M. (1994) Protein Sci., 3, 372–390.

    Google Scholar 

  • Clowes, R.T., Boucher, W., Hardman, C.H., Domaille, P.J. and Laue, E.D. (1993) J. Biomol. NMR, 3, 349–354.

    Google Scholar 

  • de, Dios, A.C., Pearson, J.G. and Oldfield, E. (1993) Science, 260, 1491–1496.

    Google Scholar 

  • Fesik, S.W., Gampe, R.T., Holzman, T.F., Egan, D.A., Edalji, R., Luly, J.R., Simmer, R., Helfrich, R., Kishore, V. and Rich, D.H. (1990) Science, 250, 1406–1409.

    Google Scholar 

  • Fesik, S.W., Gampe, R.T., Eaton, H.L., Gemmecker, G., Olejniczak, E.T., Neri, P., Holzman, T.F., Egan, D.A., Edalji, R., Simmer, R., Helfrich, R., Hochlowski, J. and Jackson, M. (1991) Biochemistry, 30, 6574–6583.

    Google Scholar 

  • Forsberg, G., Palm, G., Ekebacke, A., Josephson, S. and Hartmanis, M. (1990) Biochem. J., 271, 357–363.

    Google Scholar 

  • Griesinger, C. and Eggenberger, U. (1992) J. Magn. Reson., 97, 426–434.

    Google Scholar 

  • Griesinger, C. and Eggenberger, U. (1992) J. Magn. Reson., 97, 426–434.

    Google Scholar 

  • Grodberg, J. and Dunn, J.J. (1988) J. Bacteriol., 170, 1245–1253.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993) Acc. Chem. Res., 26, 131–138.

    Google Scholar 

  • Hammarberg, B., Nygren, P.Å., Holmgren, E., Elmblad, A., Tally, M., Hellman, U., Moks, T. and Uhlén, M.. (1989) Proc. Natl Acad. Sci. USA, 86, 4367–4371.

    Google Scholar 

  • Hammarberg, B., Tally, M., Samuelsson, E., Wadensten, H., Holmgren, E., Hartmanis, M., Hall, K., Uhlén, M. and Moks, T. (1991) J. Biol. Chem., 266, 11058–11062.

    Google Scholar 

  • Hansen, A.P., Petros, A.M., Mazar, A.P., Pederson, T.M., Rueter, A. and Fesik, S.W. (1992) Biochemistry, 31, 12713–12718.

    Google Scholar 

  • Hurle, M.R., Marks, C.B., Kosen, P.A., Anderson, S.A. and Kuntz, I.D. (1990) Biochemistry, 29, 4410–4419.

    Google Scholar 

  • Ikura, M., Kay, L.E. and Bax, A. (1990) Biochemistry 29, 4659–4667.

    Google Scholar 

  • Ikura, M., Clore, G.M., Gronenborn, A.M., Zhu, G., Klee, C.B. and Bax, A. (1992) Science, 256, 632–637.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.

    Google Scholar 

  • Kay, L.E., Clore, G.M., Bax, A. and Gronenborn, A.M. (1990) Science, 243, 411–414.

    Google Scholar 

  • Kriwacki, R.W., Hill, R.B., Flanagan, J.M., Caradonna, J.P. and Prestegard, J.H. (1993) J. Am. Chem. Soc. 115, 8907–8911.

    Google Scholar 

  • Laemmli, U.K. (1970) Nature, 227, 680–685.

    PubMed  Google Scholar 

  • Laws, D.D., de, Dios, A.C. and Oldfield, E. (1993) J. Biomol. NMR, 3, 607–612.

    Google Scholar 

  • Logan, T.M., Olejniczak, E.T., Xu, R.X. and Fesik, S.W. (1992) FEBS Lett., 314, 413–418.

    Google Scholar 

  • Logan, T.M., Thériault, Y. and Fesik, S.W. (1994) J. Mol. Biol. 236, 637–648.

    Google Scholar 

  • Lundström, H., Brobjer, M., Österlöf, B. and Moks, T. (1990) Biotechnol. Bioeng. 36, 1056–1062.

    Google Scholar 

  • Lyons, B.A., Tashiro, M., Cedergren, L., Nilsson, B. and Montelione, G.T. (1993) Biochemistry, 32, 7839–7845.

    Google Scholar 

  • Makhatadze, G.I., Kim, K.-S., Woodward, C. and Privalov, P. (1993) Protein Sci., 2, 2028–2036.

    Google Scholar 

  • Maurer, R., Meyer, B.J. and Ptashne, M. (1980) J. Mol. Biol. 139, 147–161.

    Google Scholar 

  • Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Moks, T., Abrahmsén, L., Holmgren, E., Bilich, M., Olsson, A., Uhlén, M., Pohl, G., Sterky, C., Hultberg, H., Josephson, S., Holmberg, A., Jörnvall, H. and Nilsson, B. (1987) Biochemistry, 26, 5239–5244.

    CAS  PubMed  Google Scholar 

  • Montelione, G.T. and Wagner, G. (1989) J. Am. Chem. Soc., 111, 5474–5475.

    Google Scholar 

  • Montelione, G.T., Winkler, M.E., Rauenbuehler, P. and Wagner, G. (1989) J. Magn. Reson., 82, 198–204.

    Google Scholar 

  • Montelione, G.T. and Wagner, G. (1990) J. Magn. Reson., 83, 183–188.

    Google Scholar 

  • Montelione, G.T., Emerson, S.D. and Lyons, B.A. (1992a) Biopolymers, 32, 327–334.

    Google Scholar 

  • Montelione, G.T., Lyons, B.A., Emerson, S.D. and Tashiro, M. (1992b) J. Am. Chem. Soc., 114, 10974–10975.

    Google Scholar 

  • Muhandiram, D.R., Xu, G.Y. and Kay, L.E. (1993) J. Biomol. NMR, 3, 463–470.

    Google Scholar 

  • Neidhart, F.C. (1987) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Nilsson, B., Moks, T., Jansson, B., Abrahmsén, L., Elmblad, A., Holmgren, E., Henrichson, C., Jones, T.A. and Uhlén, M. (1987) Protein Eng., 1, 107–113.

    Google Scholar 

  • Nilsson, B. and Abrahmsén, L. (1990) Methods Enzymol., 185, 144–161.

    Google Scholar 

  • Nilsson, B., Forsberg, G. and Hartmanis, M. (1991) Methods Enzymol., 198, 3–16.

    Google Scholar 

  • Nilsson, B., Forsberg, G., Moks, T., Hartmanis, M. and Uhlén, M. (1992) Curr. Opin. Struct. Biol., 2, 569–575.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1992) Biochemistry, 31, 8573–8586.

    Google Scholar 

  • Qian, Y.Q., Otting, G., Billeter, M., Müller, M., Gehring, W.J. and Wüthrich, K. (1993) J. Mol. Biol., 234, 1070–1083.

    Google Scholar 

  • Reilly, D. and Fairbrother, W.J. (1994) J. Biomol. NMR, 4, 459–462.

    Google Scholar 

  • Samuelsson, E., Moks, T., Nilsson, B. and Uhlén, M. (1994) Biochemistry, 33, 4207–4211.

    Google Scholar 

  • Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490–5492.

    Google Scholar 

  • Sugimura, K. and Higashi, N. (1988) J. Bacteriol., 170, 3650–3654.

    Google Scholar 

  • Venters, R.A., Calderone, T.L., Spicer, L.D. and Fierke, C.A. (1991) Biochemistry, 30, 4491–4494.

    Google Scholar 

  • Vuister, G.W., Wang, A.C. and Bax, A. (1993) J. Am. Chem. Soc., 115, 5334–5335.

    Google Scholar 

  • Wagner, G. (1993) J. Biomol. NMR, 3, 375–385.

    Google Scholar 

  • Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311–333.

    Google Scholar 

  • Yamashiro, D. and Li, C.H. (1985) Int. J. Pept. Protein Res., 26, 299–304.

    Google Scholar 

  • Yansura, D.B. (1990) Methods Enzymol., 185, 161–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansson, M., Li, YC., Jendeberg, L. et al. High-level production of uniformly 15N-and 13C-enriched fusion proteins in Escherichia coli . J Biomol NMR 7, 131–141 (1996). https://doi.org/10.1007/BF00203823

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203823

Keywords

Navigation