Skip to main content

Advertisement

Log in

Fabrication of a DNA-lipid-apatite composite layer for efficient and area-specific gene transfer

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A surface-mediated gene transfer system using biocompatible apatite-based composite layers has great potential for tissue engineering. Among the apatite-based composite layers developed to date, we focused on a DNA-lipid-apatite composite layer (DLp-Ap layer), which has the advantage of relatively high efficiency as a non-viral system. In this study, various lipid transfection reagents, including a newly developed reagent, polyamidoamine dendron-bearing lipid (PD), were employed to prepare the DLp-Ap layer, and the preparation condition was optimized in terms of efficiency of gene transfer to epithelial-like CHO-K1 cells in the presence of serum. The optimized DLp-Ap layer derived from PD had the highest gene transfer efficiency among all the apatite-based composite layers prepared in this study. In addition, the optimized DLp-Ap layer demonstrated higher gene transfer efficiency in the presence of serum than the conventional particle-mediated systems using commercially available lipid transfection reagents. It was also shown that the optimized DLp-Ap layer mediated the area-specific gene transfer on its surface, i.e., DNA was preferentially transferred to the cells adhering to the surface of the layer. The present gene transfer system using the PD-derived DLp-Ap layer, with the advantages of high efficiency in the presence of serum and area-specificity, would be useful in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moolten FL, Wells JM. Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst. 1990;82:297–300.

    Article  CAS  Google Scholar 

  2. Culver KW, Ram Z, Walbridge S, Ishii H, Oldfield EH, Blaese RM. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumor. Science. 1992;256:1550–2.

    Article  CAS  Google Scholar 

  3. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J, Chen C, Li J, Xiao X. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol. 2005;23:321–8.

    Article  CAS  Google Scholar 

  4. Bennett MJ, Aberle AM, Balasubramaniam RP, Malone JG, Malone RW, Nantz MH. Cationic lipid-mediated gene delivery to murine lung: correlation of lipid hydration with in vivo transfection activity. J Med Chem. 1997;40:4069–78.

    Article  CAS  Google Scholar 

  5. Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Pavlakis GN. Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol. 1997;15:647–52.

    Article  CAS  Google Scholar 

  6. Uduehi AN, Moss SH, Nuttall J, Pouton CW. Cationic lipid-mediated transfection of differentiated Caco-2 cells: a filter culture model of gene delivery to a polarized epithelium. Pharm Res. 1999;16:1805–11.

    Article  CAS  Google Scholar 

  7. Graham FL, van der Eb AJ. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973;52:456–67.

    Article  CAS  Google Scholar 

  8. Batard P, Jordan M, Wurm F. Transfer of high copy number plasmid into mammalian cells by calcium phosphate transfection. Gene. 2001;270:61–8.

    Article  CAS  Google Scholar 

  9. Roy I, Mitra S, Maitra A, Mozumdar S. Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int J Pharm. 2003;250:25–33.

    Article  CAS  Google Scholar 

  10. Chowdhury EH, Kunou M, Harada I, Kundu AK, Akaike T. Dramatic effect of Mg2+ on transfecting mammalian cells by DNA/calcium phosphate precipitates. Anal Biochem. 2004;328:96–7.

    Article  CAS  Google Scholar 

  11. Shea LD, Smiley E, Bonadio J, Mooney DJ. DNA delivery from polymer matrices for tissue engineering. Nat Biotechnol. 1999;17:551–4.

    Article  CAS  Google Scholar 

  12. Ziauddin J, Sabatini DM. Microarrays of cells expressing defined cDNAs. Nature. 2001;411:107–10.

    Article  CAS  Google Scholar 

  13. Ono I, Yamashita T, Jin HY, Ito Y, Hamada H, Akasaka Y, Nakasu M, Ogawa T, Jimbow K. Combination of porous hydroxyapatite and cationic liposomes as a vector for BMP-2 gene therapy. Biomaterials. 2004;25:4709–18.

    Article  CAS  Google Scholar 

  14. Yoshikawa T, Uchimura E, Kishi M, Funeriu DP, Miyake M, Miyake J. Transfection microarray of human mesenchymal stem cells and on-chip siRNA gene knockdown. J Control Release. 2004;96:227–32.

    Article  CAS  Google Scholar 

  15. Shen H, Tan J, Saltzman WM. Surface-mediated gene transfer from nanocomposites of controlled texture. Nat Mater. 2004;3:569–74.

    Article  CAS  Google Scholar 

  16. Oyane A, Tsurushima H, Ito A. Novel gene-transferring scaffolds having a cell adhesion molecule-DNA-apatite nanocomposite surface. Gene Ther. 2007;14:1750–3.

    Article  CAS  Google Scholar 

  17. Oyane A, Tsurushima H, Ito A. Highly efficient gene transfer system using laminin-DNA-apatite composite layer. J Gene Med. 2010;12:194–206.

    Article  CAS  Google Scholar 

  18. Oyane A, Murayama M, Yamazaki A, Sogo Y, Ito A, Tsurushima H. Fibronectin-DNA-apatite composite layer for highly efficient and area-specific gene transfer. J Biomed Mater Res A. 2010;92A:1038–47.

    CAS  Google Scholar 

  19. Sun BB, Tran KK, Shen H. Enabling customization of non-viral gene delivery systems for individual cell types by surface-induced mineralization. Biomater. 2009;30:6386–93.

    Article  CAS  Google Scholar 

  20. Luong LN, McFalls KM, Kohn DH. Gene delivery via DNA incorporation within a biomimetic apatite coating. Biomaterials. 2009;30:6996–7004.

    Article  CAS  Google Scholar 

  21. Jarcho M, Kay JF, Drobeck HP, Dremus RH. Tissue cellular and subcellular events at bone-ceramic hydroxyapatite interface. J Bioeng. 1976;1:79–92.

    Google Scholar 

  22. Aoki H. Science and medical applications of hydroxyapatite. Tokyo: Takayama Press System Center; 1991.

  23. Takahashi T, Kono K, Itoh T, Emi N, Takagishi T. Synthesis of novel cationic lipids having polyamidoamine dendrons and their transfection activity. Bioconj Chem. 2003;14:764–73.

    Article  CAS  Google Scholar 

  24. Takahashi T, Harada A, Emi N, Kono K. Preparation of efficient gene carriers using a polyamidoamine dendron-bearing lipid: improvement of serum resistance. Bioconj Chem. 2005;16:1160–5.

    Article  CAS  Google Scholar 

  25. Takahashi T, Kojima C, Harada A, Kono K. Alkyl chain moieties of polyamidoamine dendron-bearing lipid influence their function as a nonviral gene vector. Bioconjug Chem. 2007;18:1349–54.

    Article  CAS  Google Scholar 

  26. Oyane A, Uchida M, Ito A. Laminin-apatite composite coating to enhance cell adhesion to ethylene-vinyl alcohol copolymer. J Biomed Mater Res A. 2005;72A:168–74.

    Article  CAS  Google Scholar 

  27. Oyane A, Wang X, Sogo Y, Ito A, Tsurushima H. Calcium phosphate composite layers for surface-mediated gene transfer. Acta Biomaterialia, in press.

  28. Oyane A. Development of apatite-based composites by a biomimetic process for biomedical applications. J Ceram Soc Japan. 2010;118:77–81.

    Article  CAS  Google Scholar 

  29. Oyane A, Uchida M, Ishihara Y, Ito A. Ultra-structural study of the laminin-apatite composite layer formed on ethylene-vinyl alcohol copolymer by a biomimetic process. Key Eng Mater. 2005;284–286:227–30.

    Article  Google Scholar 

  30. Uchida M, Oyane A, Kim HM, Kokubo T, Ito A. Biomimetic coating of laminin-apatite composite on titanium metal and its excellent cell-adhesive properties. Adv Mater. 2004;16:1071–4.

    Article  CAS  Google Scholar 

  31. Safinya CR. Structures of lipid–DNA complexes: supramolecular assembly and gene delivery. Curr Opin Struct Biol. 2001;11:440–8.

    Article  CAS  Google Scholar 

  32. Elliot JC. Structure and chemistry of the apatites and other calcium phosphates. Amsterdam: Elsevier Science BV; 1994.

    Google Scholar 

  33. Oyane A, Uchida M, Onuma K, Ito A. Spontaneous growth of a laminin-apatite nano-composite in a metastable calcium phosphate solution. Biomaterials. 2006;27:167–75.

    Article  CAS  Google Scholar 

  34. Oyane A, Ootsuka T, Hayama K, Sogo Y, Ito A. Enhanced immobilization of acidic proteins in the apatite layer via electrostatic interactions in a supersaturated calcium phosphate solution. Acta Biomater. 2011;7:2969–76.

    Article  CAS  Google Scholar 

  35. Yang JP, Huang L. Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA. Gene Ther. 1997;4:950–60.

    Article  CAS  Google Scholar 

  36. Yang JP, Huang L. Time-dependent maturation of cationic liposome–DNA complex for serum resistance. Gene Ther. 1998;5:380–7.

    Article  CAS  Google Scholar 

  37. Li S, Tseng WC, Stolz DB, Wu SP, Watkins SC, Huang L. Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection. Gene Ther. 1999;6:585–94.

    Article  CAS  Google Scholar 

  38. Yazaki Y, Oyane A, Tsurushima H, Sogo Y, Ito A, Yamazaki A. Control of gene transfer on a DNA-fibronectin-apatite composite layer by the incorporation of carbonate and fluoride ions. Biomaterials. 2011;32:896–4902.

    Article  Google Scholar 

  39. Zhang W, Tsurushima H, Oyane A, Yazaki Y, Sogo Y, Ito A, Matsumura A. BMP-2 gene-fibronectin-apatite composite layer enhances bone formation. J Biomed Sci. 2011;18:62.

    Article  Google Scholar 

  40. Wang X, Oyane A, Tsurushima H, Sogo Y, Li X, Ito A. BMP-2 and ALP gene expression induced by a BMP-2 gene-fibronectin-apatite composite layer. Biomed Mater. 2011;6:045004.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for young scientist (B) (22700499) from the Ministry of Education, Culture, Sport, Science and Technology of Japan. We acknowledge Katayama Chemical Industries, Co., Ltd., Japan for supplying PD. A part of this work was conducted at the Nano-Processing Facility, supported by IBEC Innovation Platform, National Institute of Advanced Industrial Science and Technology (AIST), Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayako Oyane or Hideo Tsurushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oyane, A., Yazaki, Y., Araki, H. et al. Fabrication of a DNA-lipid-apatite composite layer for efficient and area-specific gene transfer. J Mater Sci: Mater Med 23, 1011–1019 (2012). https://doi.org/10.1007/s10856-012-4581-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4581-y

Keywords

Navigation